메뉴 건너뛰기




Volumn 11, Issue 11, 2016, Pages 1424-1432

Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose

Author keywords

2,3 Butanediol; Catabolite repression; Galactose; Pyruvate decarboxylase; Saccharomyces cerevisiae

Indexed keywords

BIOFUELS; BIOMASS; FERMENTATION; GENES; MARINE ENGINEERING; SUGARS; TRANSCRIPTION; YEAST;

EID: 84994236578     PISSN: 18606768     EISSN: 18607314     Source Type: Journal    
DOI: 10.1002/biot.201600042     Document Type: Article
Times cited : (15)

References (41)
  • 1
    • 77956354825 scopus 로고    scopus 로고
    • Catalytic conversion of renewable biomass resources to fuels and chemicals
    • Serrano-Ruiz, J. C., West, R. M., Dumesic, J. A., Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 79–100.
    • (2010) Annu. Rev. Chem. Biomol. Eng. , vol.1 , pp. 79-100
    • Serrano-Ruiz, J.C.1    West, R.M.2    Dumesic, J.A.3
  • 2
    • 69049110784 scopus 로고    scopus 로고
    • The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource
    • Wi, S. G., Kim, H. J., Mahadevan, S. A., Yang, D.-J., Bae, H.-J., The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour. Technol. 2009, 100, 6658–6660.
    • (2009) Bioresour. Technol. , vol.100 , pp. 6658-6660
    • Wi, S.G.1    Kim, H.J.2    Mahadevan, S.A.3    Yang, D.-J.4    Bae, H.-J.5
  • 3
    • 78751550488 scopus 로고    scopus 로고
    • Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering
    • Lee, K. S., Hong, M. E., Jung, S. C., Ha, S. J. et al., Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol. Bioeng. 2011, 108, 621–631.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 621-631
    • Lee, K.S.1    Hong, M.E.2    Jung, S.C.3    Ha, S.J.4
  • 4
    • 84897917184 scopus 로고    scopus 로고
    • Deletion of the HXK2 gene in Saccharomyces cerevisiae enables mixed sugar fermentation of glucose and galactose in oxygen-limited conditions
    • Bae, Y.-H., Kweon, D.-H., Park, Y.-C., Seo, J.-H., Deletion of the HXK2 gene in Saccharomyces cerevisiae enables mixed sugar fermentation of glucose and galactose in oxygen-limited conditions. Process Biochem. 2014, 49, 547–553.
    • (2014) Process Biochem. , vol.49 , pp. 547-553
    • Bae, Y.-H.1    Kweon, D.-H.2    Park, Y.-C.3    Seo, J.-H.4
  • 5
    • 78149408574 scopus 로고    scopus 로고
    • Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass
    • Kim, J.-H., Block, D. E., Mills, D. A., Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 2010, 88, 1077–1085.
    • (2010) Appl. Microbiol. Biotechnol. , vol.88 , pp. 1077-1085
    • Kim, J.-H.1    Block, D.E.2    Mills, D.A.3
  • 7
    • 0035098550 scopus 로고    scopus 로고
    • Biological production of 2,3-butanediol
    • Syu, M.-J., Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 2001, 55, 10–18.
    • (2001) Appl. Microbiol. Biotechnol. , vol.55 , pp. 10-18
    • Syu, M.-J.1
  • 8
    • 0029039464 scopus 로고
    • Fermentative production of 2,3-butanediol: A review
    • Garg, S., Jain, A., Fermentative production of 2,3-butanediol: A review. Bioresour. Technol. 1995, 51, 103–109.
    • (1995) Bioresour. Technol. , vol.51 , pp. 103-109
    • Garg, S.1    Jain, A.2
  • 9
    • 69949138611 scopus 로고    scopus 로고
    • High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31
    • Petrov, K., Petrova, P., High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl. Microb. Biotech. 2009, 84, 659–665.
    • (2009) Appl. Microb. Biotech. , vol.84 , pp. 659-665
    • Petrov, K.1    Petrova, P.2
  • 10
    • 76849116670 scopus 로고    scopus 로고
    • Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene
    • Ji, X.-J., Huang, H., Zhu, J.-G., Ren, L.-J. et al., Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl. Microbiol. Biotechnol. 2010, 85, 1751–1758.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1751-1758
    • Ji, X.-J.1    Huang, H.2    Zhu, J.-G.3    Ren, L.-J.4
  • 11
    • 84884835391 scopus 로고    scopus 로고
    • Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase
    • Yang, T., Rao, Z., Zhang, X., Xu, M. et al., Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS One 2013, 8, e76149.
    • (2013) PLoS One , vol.8
    • Yang, T.1    Rao, Z.2    Zhang, X.3    Xu, M.4
  • 12
    • 84882274841 scopus 로고    scopus 로고
    • Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
    • Kim, S.-J., Seo, S.-O., Jin, Y.-S., Seo, J.-H., Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour. Technol. 2013, 146, 274–281.
    • (2013) Bioresour. Technol. , vol.146 , pp. 274-281
    • Kim, S.-J.1    Seo, S.-O.2    Jin, Y.-S.3    Seo, J.-H.4
  • 13
    • 84903818697 scopus 로고    scopus 로고
    • 2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae
    • Nan, H., Seo, S.-O., Oh, E. J., Seo, J.-H. et al., 2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2014, 98, 5757–5764.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 5757-5764
    • Nan, H.1    Seo, S.-O.2    Oh, E.J.3    Seo, J.-H.4
  • 14
    • 84940044539 scopus 로고    scopus 로고
    • Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae
    • Kim, J.-W., Seo, S.-O., Zhang, G.-C., Jin, Y.-S., Seo, J.-H., Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresour. Technol. 2015, 191, 512–519.
    • (2015) Bioresour. Technol. , vol.191 , pp. 512-519
    • Kim, J.-W.1    Seo, S.-O.2    Zhang, G.-C.3    Jin, Y.-S.4    Seo, J.-H.5
  • 15
    • 0025304880 scopus 로고
    • Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5
    • Hohmann, S., Cederberg, H., Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PD C5. Eur. J. Biochem. 1990, 188, 615–621.
    • (1990) Eur. J. Biochem. , vol.188 , pp. 615-621
    • Hohmann, S.1    Cederberg, H.2
  • 16
    • 0029984511 scopus 로고    scopus 로고
    • Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose
    • Flikweert, M. T., van der Zanden, L., Janssen, W. M. T. M., Yde Steensma, H. et al., Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 1996, 12, 247–257.
    • (1996) Yeast , vol.12 , pp. 247-257
    • Flikweert, M.T.1    van der Zanden, L.2    Janssen, W.M.T.M.3    Yde Steensma, H.4
  • 17
    • 0031464418 scopus 로고    scopus 로고
    • Cloning-free PCR-based allele replacement methods
    • Erdeniz, N., Mortensen, U. H., Rothstein, R., Cloning-free PCR-based allele replacement methods. Genome Res. 1997, 7, 1174–1183.
    • (1997) Genome Res. , vol.7 , pp. 1174-1183
    • Erdeniz, N.1    Mortensen, U.H.2    Rothstein, R.3
  • 18
    • 0037087284 scopus 로고    scopus 로고
    • Efficient PCR-based gene disruption in Saccharomyces strains using intergenic primers
    • Reid, R. J., Sunjevaric, I., Kedacche, M., Rothstein, R., Efficient PCR-based gene disruption in Saccharomyces strains using intergenic primers. Yeast 2002, 19, 319–328.
    • (2002) Yeast , vol.19 , pp. 319-328
    • Reid, R.J.1    Sunjevaric, I.2    Kedacche, M.3    Rothstein, R.4
  • 19
    • 84866145291 scopus 로고    scopus 로고
    • An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
    • Oud, B., Flores, C.-L., Gancedo, C., Zhang, X. et al., An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb. Cell Fact. 2012, 11, 131.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 131
    • Oud, B.1    Flores, C.-L.2    Gancedo, C.3    Zhang, X.4
  • 20
    • 84922311782 scopus 로고    scopus 로고
    • Galactose metabolic genes in yeast respond to a ratio of galactose and glucose
    • Escalante-Chong, R., Savir, Y., Carroll, S. M., Ingraham, J. B. et al., Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc. Natl. Acad. Sci. USA 2015, 112, 1636–1641.
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 1636-1641
    • Escalante-Chong, R.1    Savir, Y.2    Carroll, S.M.3    Ingraham, J.B.4
  • 21
    • 34250247582 scopus 로고
    • Batch ethanol production with dual organisms
    • Jones, R., Greenfield, P., Batch ethanol production with dual organisms. Biotechnol. Lett. 1981, 3, 225–230.
    • (1981) Biotechnol. Lett. , vol.3 , pp. 225-230
    • Jones, R.1    Greenfield, P.2
  • 23
    • 0026883301 scopus 로고
    • Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation
    • Thatipamala, R., Rohani, S., Hill, G., Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol. Bioeng. 1992, 40, 289–297.
    • (1992) Biotechnol. Bioeng. , vol.40 , pp. 289-297
    • Thatipamala, R.1    Rohani, S.2    Hill, G.3
  • 24
    • 0031810672 scopus 로고    scopus 로고
    • Yeast carbon catabolite repression
    • Gancedo, J. M., Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 1998, 62, 334–361.
    • (1998) Microbiol. Mol. Biol. Rev. , vol.62 , pp. 334-361
    • Gancedo, J.M.1
  • 26
    • 0030953385 scopus 로고    scopus 로고
    • The molecular genetics of hexose transport in yeasts
    • Boles, E., Hollenberg, C. P., The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 1997, 21, 85–111.
    • (1997) FEMS Microbiol. Rev. , vol.21 , pp. 85-111
    • Boles, E.1    Hollenberg, C.P.2
  • 27
    • 0036892455 scopus 로고    scopus 로고
    • Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters
    • Maier, A., Völker, B., Boles, E., Fuhrmann, G. F., Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2002, 2, 539–550.
    • (2002) FEMS Yeast Res. , vol.2 , pp. 539-550
    • Maier, A.1    Völker, B.2    Boles, E.3    Fuhrmann, G.F.4
  • 28
    • 1242274644 scopus 로고    scopus 로고
    • Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I
    • Moriya, H., Johnston, M., Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc. Natl. Acad. Sci. USA 2004, 101, 1572–1577.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 1572-1577
    • Moriya, H.1    Johnston, M.2
  • 29
    • 15544364487 scopus 로고    scopus 로고
    • How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose
    • Polish, J. A., Kim, J.-H., Johnston, M., How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 2005, 169, 583–594.
    • (2005) Genetics , vol.169 , pp. 583-594
    • Polish, J.A.1    Kim, J.-H.2    Johnston, M.3
  • 30
    • 0033000330 scopus 로고    scopus 로고
    • Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae
    • Schmidt, M. C., McCartney, R. R., Zhang, X., Tillman, T. S. et al., Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 1999, 19, 4561–4571.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4561-4571
    • Schmidt, M.C.1    McCartney, R.R.2    Zhang, X.3    Tillman, T.S.4
  • 31
    • 0033986343 scopus 로고    scopus 로고
    • The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3-and Rgt2-dependent glucose signaling in yeast
    • Schulte, F., Wieczorke, R., Hollenberg, C. P., Boles, E., The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3-and Rgt2-dependent glucose signaling in yeast. J. Bacteriol. 2000, 182, 540–542.
    • (2000) J. Bacteriol. , vol.182 , pp. 540-542
    • Schulte, F.1    Wieczorke, R.2    Hollenberg, C.P.3    Boles, E.4
  • 32
    • 0033962922 scopus 로고    scopus 로고
    • Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae
    • Lafuente, M. J., Gancedo, C., Jauniaux, J. C., Gancedo, J. M., Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol. Microbiol. 2000, 35, 161–172.
    • (2000) Mol. Microbiol. , vol.35 , pp. 161-172
    • Lafuente, M.J.1    Gancedo, C.2    Jauniaux, J.C.3    Gancedo, J.M.4
  • 33
    • 0345869655 scopus 로고    scopus 로고
    • Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast
    • van Maris, A. J., Geertman, J.-M. A., Vermeulen, A., Groothuizen, M. K. et al., Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl. Environ. Microbiol. 2004, 70, 159–166.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 159-166
    • van Maris, A.J.1    Geertman, J.-M.A.2    Vermeulen, A.3    Groothuizen, M.K.4
  • 34
    • 0029911743 scopus 로고    scopus 로고
    • Glucose sensing and signalling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family
    • Walsh, M. C., Scholte, M., Valkier, J., Smits, H. P., van Dam, K., Glucose sensing and signalling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family. J. Bacteriol. 1996, 178, 2593–2597.
    • (1996) J. Bacteriol. , vol.178 , pp. 2593-2597
    • Walsh, M.C.1    Scholte, M.2    Valkier, J.3    Smits, H.P.4    van Dam, K.5
  • 35
    • 0030891998 scopus 로고    scopus 로고
    • Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression
    • Reifenberger, E., Boles, E., Ciriacy, M., Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem. 1997, 245, 324–333.
    • (1997) Eur. J. Biochem. , vol.245 , pp. 324-333
    • Reifenberger, E.1    Boles, E.2    Ciriacy, M.3
  • 36
    • 0032786828 scopus 로고    scopus 로고
    • Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter
    • Ye, L., Kruckeberg, A. L., Berden, J. A., van Dam, K., Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter. J. Bacteriol. 1999, 181, 4673–4675.
    • (1999) J. Bacteriol. , vol.181 , pp. 4673-4675
    • Ye, L.1    Kruckeberg, A.L.2    Berden, J.A.3    van Dam, K.4
  • 37
    • 84885439374 scopus 로고    scopus 로고
    • Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
    • Wei, N., Quarterman, J., Kim, S. R., Cate, J. H., Jin, Y.-S., Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat. Commun. 2013, 4, 2580.
    • (2013) Nat. Commun. , vol.4 , pp. 2580
    • Wei, N.1    Quarterman, J.2    Kim, S.R.3    Cate, J.H.4    Jin, Y.-S.5
  • 38
    • 0024371129 scopus 로고
    • Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles
    • Ramos, J., Szkutnicka, K., Cirillo, V., Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles. J. Bacteriol. 1989, 171, 3539–3544.
    • (1989) J. Bacteriol. , vol.171 , pp. 3539-3544
    • Ramos, J.1    Szkutnicka, K.2    Cirillo, V.3
  • 39
    • 0033664269 scopus 로고    scopus 로고
    • Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network
    • Ostergaard, S., Olsson, L., Johnston, M., Nielsen, J., Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 2000, 18, 1283–1286.
    • (2000) Nat. Biotechnol. , vol.18 , pp. 1283-1286
    • Ostergaard, S.1    Olsson, L.2    Johnston, M.3    Nielsen, J.4
  • 40
    • 77952691597 scopus 로고    scopus 로고
    • PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae
    • Sanchez, R. G., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae. Microb. Cell Fact. 2010, 9, 40–47.
    • (2010) Microb. Cell Fact. , vol.9 , pp. 40-47
    • Sanchez, R.G.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 41
    • 84923922989 scopus 로고    scopus 로고
    • Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae
    • Kim, S.-J., Seo, S.-O., Park, Y.-C., Jin, Y.-S., Seo, J.-H., Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. J. Biotechnol. 2014, 192, 374–382.
    • (2014) J. Biotechnol. , vol.192 , pp. 374-382
    • Kim, S.-J.1    Seo, S.-O.2    Park, Y.-C.3    Jin, Y.-S.4    Seo, J.-H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.