-
1
-
-
77956354825
-
Catalytic conversion of renewable biomass resources to fuels and chemicals
-
Serrano-Ruiz, J. C., West, R. M., Dumesic, J. A., Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 79–100.
-
(2010)
Annu. Rev. Chem. Biomol. Eng.
, vol.1
, pp. 79-100
-
-
Serrano-Ruiz, J.C.1
West, R.M.2
Dumesic, J.A.3
-
2
-
-
69049110784
-
The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource
-
Wi, S. G., Kim, H. J., Mahadevan, S. A., Yang, D.-J., Bae, H.-J., The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour. Technol. 2009, 100, 6658–6660.
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 6658-6660
-
-
Wi, S.G.1
Kim, H.J.2
Mahadevan, S.A.3
Yang, D.-J.4
Bae, H.-J.5
-
3
-
-
78751550488
-
Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering
-
Lee, K. S., Hong, M. E., Jung, S. C., Ha, S. J. et al., Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol. Bioeng. 2011, 108, 621–631.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 621-631
-
-
Lee, K.S.1
Hong, M.E.2
Jung, S.C.3
Ha, S.J.4
-
4
-
-
84897917184
-
Deletion of the HXK2 gene in Saccharomyces cerevisiae enables mixed sugar fermentation of glucose and galactose in oxygen-limited conditions
-
Bae, Y.-H., Kweon, D.-H., Park, Y.-C., Seo, J.-H., Deletion of the HXK2 gene in Saccharomyces cerevisiae enables mixed sugar fermentation of glucose and galactose in oxygen-limited conditions. Process Biochem. 2014, 49, 547–553.
-
(2014)
Process Biochem.
, vol.49
, pp. 547-553
-
-
Bae, Y.-H.1
Kweon, D.-H.2
Park, Y.-C.3
Seo, J.-H.4
-
5
-
-
78149408574
-
Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass
-
Kim, J.-H., Block, D. E., Mills, D. A., Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 2010, 88, 1077–1085.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.88
, pp. 1077-1085
-
-
Kim, J.-H.1
Block, D.E.2
Mills, D.A.3
-
6
-
-
48149113309
-
The renewable chemicals industry
-
Christensen, C. H., Rass-Hansen, J., Marsden, C. C., Taarning, E., Egeblad, K., The renewable chemicals industry. ChemSusChem 2008, 1, 283–289.
-
(2008)
ChemSusChem
, vol.1
, pp. 283-289
-
-
Christensen, C.H.1
Rass-Hansen, J.2
Marsden, C.C.3
Taarning, E.4
Egeblad, K.5
-
7
-
-
0035098550
-
Biological production of 2,3-butanediol
-
Syu, M.-J., Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 2001, 55, 10–18.
-
(2001)
Appl. Microbiol. Biotechnol.
, vol.55
, pp. 10-18
-
-
Syu, M.-J.1
-
8
-
-
0029039464
-
Fermentative production of 2,3-butanediol: A review
-
Garg, S., Jain, A., Fermentative production of 2,3-butanediol: A review. Bioresour. Technol. 1995, 51, 103–109.
-
(1995)
Bioresour. Technol.
, vol.51
, pp. 103-109
-
-
Garg, S.1
Jain, A.2
-
9
-
-
69949138611
-
High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31
-
Petrov, K., Petrova, P., High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl. Microb. Biotech. 2009, 84, 659–665.
-
(2009)
Appl. Microb. Biotech.
, vol.84
, pp. 659-665
-
-
Petrov, K.1
Petrova, P.2
-
10
-
-
76849116670
-
Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene
-
Ji, X.-J., Huang, H., Zhu, J.-G., Ren, L.-J. et al., Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl. Microbiol. Biotechnol. 2010, 85, 1751–1758.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.85
, pp. 1751-1758
-
-
Ji, X.-J.1
Huang, H.2
Zhu, J.-G.3
Ren, L.-J.4
-
11
-
-
84884835391
-
Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase
-
Yang, T., Rao, Z., Zhang, X., Xu, M. et al., Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS One 2013, 8, e76149.
-
(2013)
PLoS One
, vol.8
-
-
Yang, T.1
Rao, Z.2
Zhang, X.3
Xu, M.4
-
12
-
-
84882274841
-
Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
-
Kim, S.-J., Seo, S.-O., Jin, Y.-S., Seo, J.-H., Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour. Technol. 2013, 146, 274–281.
-
(2013)
Bioresour. Technol.
, vol.146
, pp. 274-281
-
-
Kim, S.-J.1
Seo, S.-O.2
Jin, Y.-S.3
Seo, J.-H.4
-
13
-
-
84903818697
-
2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae
-
Nan, H., Seo, S.-O., Oh, E. J., Seo, J.-H. et al., 2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2014, 98, 5757–5764.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 5757-5764
-
-
Nan, H.1
Seo, S.-O.2
Oh, E.J.3
Seo, J.-H.4
-
14
-
-
84940044539
-
Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae
-
Kim, J.-W., Seo, S.-O., Zhang, G.-C., Jin, Y.-S., Seo, J.-H., Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresour. Technol. 2015, 191, 512–519.
-
(2015)
Bioresour. Technol.
, vol.191
, pp. 512-519
-
-
Kim, J.-W.1
Seo, S.-O.2
Zhang, G.-C.3
Jin, Y.-S.4
Seo, J.-H.5
-
15
-
-
0025304880
-
Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5
-
Hohmann, S., Cederberg, H., Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PD C5. Eur. J. Biochem. 1990, 188, 615–621.
-
(1990)
Eur. J. Biochem.
, vol.188
, pp. 615-621
-
-
Hohmann, S.1
Cederberg, H.2
-
16
-
-
0029984511
-
Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose
-
Flikweert, M. T., van der Zanden, L., Janssen, W. M. T. M., Yde Steensma, H. et al., Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 1996, 12, 247–257.
-
(1996)
Yeast
, vol.12
, pp. 247-257
-
-
Flikweert, M.T.1
van der Zanden, L.2
Janssen, W.M.T.M.3
Yde Steensma, H.4
-
17
-
-
0031464418
-
Cloning-free PCR-based allele replacement methods
-
Erdeniz, N., Mortensen, U. H., Rothstein, R., Cloning-free PCR-based allele replacement methods. Genome Res. 1997, 7, 1174–1183.
-
(1997)
Genome Res.
, vol.7
, pp. 1174-1183
-
-
Erdeniz, N.1
Mortensen, U.H.2
Rothstein, R.3
-
18
-
-
0037087284
-
Efficient PCR-based gene disruption in Saccharomyces strains using intergenic primers
-
Reid, R. J., Sunjevaric, I., Kedacche, M., Rothstein, R., Efficient PCR-based gene disruption in Saccharomyces strains using intergenic primers. Yeast 2002, 19, 319–328.
-
(2002)
Yeast
, vol.19
, pp. 319-328
-
-
Reid, R.J.1
Sunjevaric, I.2
Kedacche, M.3
Rothstein, R.4
-
19
-
-
84866145291
-
An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
-
Oud, B., Flores, C.-L., Gancedo, C., Zhang, X. et al., An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb. Cell Fact. 2012, 11, 131.
-
(2012)
Microb. Cell Fact.
, vol.11
, pp. 131
-
-
Oud, B.1
Flores, C.-L.2
Gancedo, C.3
Zhang, X.4
-
20
-
-
84922311782
-
Galactose metabolic genes in yeast respond to a ratio of galactose and glucose
-
Escalante-Chong, R., Savir, Y., Carroll, S. M., Ingraham, J. B. et al., Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc. Natl. Acad. Sci. USA 2015, 112, 1636–1641.
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, pp. 1636-1641
-
-
Escalante-Chong, R.1
Savir, Y.2
Carroll, S.M.3
Ingraham, J.B.4
-
21
-
-
34250247582
-
Batch ethanol production with dual organisms
-
Jones, R., Greenfield, P., Batch ethanol production with dual organisms. Biotechnol. Lett. 1981, 3, 225–230.
-
(1981)
Biotechnol. Lett.
, vol.3
, pp. 225-230
-
-
Jones, R.1
Greenfield, P.2
-
22
-
-
0022518776
-
Ethanol tolerance in yeasts
-
Casey, G. P., Ingledew, W. M., Ethanol tolerance in yeasts. CRC Crit. Rev. Microbiol. 1986, 13, 219–280.
-
(1986)
CRC Crit. Rev. Microbiol.
, vol.13
, pp. 219-280
-
-
Casey, G.P.1
Ingledew, W.M.2
-
23
-
-
0026883301
-
Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation
-
Thatipamala, R., Rohani, S., Hill, G., Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol. Bioeng. 1992, 40, 289–297.
-
(1992)
Biotechnol. Bioeng.
, vol.40
, pp. 289-297
-
-
Thatipamala, R.1
Rohani, S.2
Hill, G.3
-
24
-
-
0031810672
-
Yeast carbon catabolite repression
-
Gancedo, J. M., Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 1998, 62, 334–361.
-
(1998)
Microbiol. Mol. Biol. Rev.
, vol.62
, pp. 334-361
-
-
Gancedo, J.M.1
-
25
-
-
0000632439
-
Regulation of carbon and phosphate utilization
-
in, Jones, E. W., Pringle, J. R., Broach, J. R., (Eds.)
-
Johnston, M., Carlson, M., Regulation of carbon and phosphate utilization, in: Jones, E. W., Pringle, J. R., Broach, J. R. (Eds.), The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression, Cold Spring Harbor Laboratory Press 1992, pp. 193–281.
-
(1992)
The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression, Cold Spring Harbor Laboratory Press
, pp. 193-281
-
-
Johnston, M.1
Carlson, M.2
-
26
-
-
0030953385
-
The molecular genetics of hexose transport in yeasts
-
Boles, E., Hollenberg, C. P., The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 1997, 21, 85–111.
-
(1997)
FEMS Microbiol. Rev.
, vol.21
, pp. 85-111
-
-
Boles, E.1
Hollenberg, C.P.2
-
27
-
-
0036892455
-
Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters
-
Maier, A., Völker, B., Boles, E., Fuhrmann, G. F., Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2002, 2, 539–550.
-
(2002)
FEMS Yeast Res.
, vol.2
, pp. 539-550
-
-
Maier, A.1
Völker, B.2
Boles, E.3
Fuhrmann, G.F.4
-
28
-
-
1242274644
-
Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I
-
Moriya, H., Johnston, M., Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc. Natl. Acad. Sci. USA 2004, 101, 1572–1577.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 1572-1577
-
-
Moriya, H.1
Johnston, M.2
-
29
-
-
15544364487
-
How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose
-
Polish, J. A., Kim, J.-H., Johnston, M., How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 2005, 169, 583–594.
-
(2005)
Genetics
, vol.169
, pp. 583-594
-
-
Polish, J.A.1
Kim, J.-H.2
Johnston, M.3
-
30
-
-
0033000330
-
Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae
-
Schmidt, M. C., McCartney, R. R., Zhang, X., Tillman, T. S. et al., Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 1999, 19, 4561–4571.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 4561-4571
-
-
Schmidt, M.C.1
McCartney, R.R.2
Zhang, X.3
Tillman, T.S.4
-
31
-
-
0033986343
-
The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3-and Rgt2-dependent glucose signaling in yeast
-
Schulte, F., Wieczorke, R., Hollenberg, C. P., Boles, E., The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3-and Rgt2-dependent glucose signaling in yeast. J. Bacteriol. 2000, 182, 540–542.
-
(2000)
J. Bacteriol.
, vol.182
, pp. 540-542
-
-
Schulte, F.1
Wieczorke, R.2
Hollenberg, C.P.3
Boles, E.4
-
32
-
-
0033962922
-
Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae
-
Lafuente, M. J., Gancedo, C., Jauniaux, J. C., Gancedo, J. M., Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol. Microbiol. 2000, 35, 161–172.
-
(2000)
Mol. Microbiol.
, vol.35
, pp. 161-172
-
-
Lafuente, M.J.1
Gancedo, C.2
Jauniaux, J.C.3
Gancedo, J.M.4
-
33
-
-
0345869655
-
Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast
-
van Maris, A. J., Geertman, J.-M. A., Vermeulen, A., Groothuizen, M. K. et al., Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl. Environ. Microbiol. 2004, 70, 159–166.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 159-166
-
-
van Maris, A.J.1
Geertman, J.-M.A.2
Vermeulen, A.3
Groothuizen, M.K.4
-
34
-
-
0029911743
-
Glucose sensing and signalling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family
-
Walsh, M. C., Scholte, M., Valkier, J., Smits, H. P., van Dam, K., Glucose sensing and signalling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family. J. Bacteriol. 1996, 178, 2593–2597.
-
(1996)
J. Bacteriol.
, vol.178
, pp. 2593-2597
-
-
Walsh, M.C.1
Scholte, M.2
Valkier, J.3
Smits, H.P.4
van Dam, K.5
-
35
-
-
0030891998
-
Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression
-
Reifenberger, E., Boles, E., Ciriacy, M., Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem. 1997, 245, 324–333.
-
(1997)
Eur. J. Biochem.
, vol.245
, pp. 324-333
-
-
Reifenberger, E.1
Boles, E.2
Ciriacy, M.3
-
36
-
-
0032786828
-
Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter
-
Ye, L., Kruckeberg, A. L., Berden, J. A., van Dam, K., Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter. J. Bacteriol. 1999, 181, 4673–4675.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 4673-4675
-
-
Ye, L.1
Kruckeberg, A.L.2
Berden, J.A.3
van Dam, K.4
-
37
-
-
84885439374
-
Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
-
Wei, N., Quarterman, J., Kim, S. R., Cate, J. H., Jin, Y.-S., Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat. Commun. 2013, 4, 2580.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2580
-
-
Wei, N.1
Quarterman, J.2
Kim, S.R.3
Cate, J.H.4
Jin, Y.-S.5
-
38
-
-
0024371129
-
Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles
-
Ramos, J., Szkutnicka, K., Cirillo, V., Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles. J. Bacteriol. 1989, 171, 3539–3544.
-
(1989)
J. Bacteriol.
, vol.171
, pp. 3539-3544
-
-
Ramos, J.1
Szkutnicka, K.2
Cirillo, V.3
-
39
-
-
0033664269
-
Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network
-
Ostergaard, S., Olsson, L., Johnston, M., Nielsen, J., Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 2000, 18, 1283–1286.
-
(2000)
Nat. Biotechnol.
, vol.18
, pp. 1283-1286
-
-
Ostergaard, S.1
Olsson, L.2
Johnston, M.3
Nielsen, J.4
-
40
-
-
77952691597
-
PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae
-
Sanchez, R. G., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae. Microb. Cell Fact. 2010, 9, 40–47.
-
(2010)
Microb. Cell Fact.
, vol.9
, pp. 40-47
-
-
Sanchez, R.G.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
41
-
-
84923922989
-
Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae
-
Kim, S.-J., Seo, S.-O., Park, Y.-C., Jin, Y.-S., Seo, J.-H., Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. J. Biotechnol. 2014, 192, 374–382.
-
(2014)
J. Biotechnol.
, vol.192
, pp. 374-382
-
-
Kim, S.-J.1
Seo, S.-O.2
Park, Y.-C.3
Jin, Y.-S.4
Seo, J.-H.5
|