-
1
-
-
77950542752
-
Targeting Toll-like receptors: emerging therapeutics?
-
1 Hennessy, E.J., et al. Targeting Toll-like receptors: emerging therapeutics?. Nat. Rev. Drug Discov. 9 (2010), 293–307.
-
(2010)
Nat. Rev. Drug Discov.
, vol.9
, pp. 293-307
-
-
Hennessy, E.J.1
-
2
-
-
84883790050
-
Cytoplasmic LPS activates Caspase-11: implications in TLR4-independent endotoxic shock
-
2 Hagar, J.A., et al. Cytoplasmic LPS activates Caspase-11: implications in TLR4-independent endotoxic shock. Science 341 (2013), 1250–1253.
-
(2013)
Science
, vol.341
, pp. 1250-1253
-
-
Hagar, J.A.1
-
3
-
-
84883775365
-
Noncanonical inflammasome activation by intracellular LPS independent of TLR4
-
3 Kayagaki, N., et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341 (2013), 1246–1249.
-
(2013)
Science
, vol.341
, pp. 1246-1249
-
-
Kayagaki, N.1
-
4
-
-
80455176839
-
Non-canonical inflammasome activation targets caspase-11
-
4 Kayagaki, N., et al. Non-canonical inflammasome activation targets caspase-11. Nature 479 (2011), 117–121.
-
(2011)
Nature
, vol.479
, pp. 117-121
-
-
Kayagaki, N.1
-
5
-
-
84906571225
-
Inflammatory caspases are innate immune receptors for intracellular LPS
-
5 Shi, J., et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514 (2014), 187–192.
-
(2014)
Nature
, vol.514
, pp. 187-192
-
-
Shi, J.1
-
6
-
-
84874189388
-
Caspase-11 protects against bacteria that escape the vacuole
-
6 Aachoui, Y., et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339 (2013), 975–978.
-
(2013)
Science
, vol.339
, pp. 975-978
-
-
Aachoui, Y.1
-
7
-
-
84911992879
-
Noncanonical inflammasome activation of Caspase-4/Caspase-11 mediates epithelial defenses against enteric bacterial pathogens
-
7 Knodler, L.A., et al. Noncanonical inflammasome activation of Caspase-4/Caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe. 16 (2014), 249–256.
-
(2014)
Cell Host Microbe.
, vol.16
, pp. 249-256
-
-
Knodler, L.A.1
-
8
-
-
84942856523
-
Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling
-
8 Kayagaki, N., et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling. Nature 526 (2015), 666–671.
-
(2015)
Nature
, vol.526
, pp. 666-671
-
-
Kayagaki, N.1
-
9
-
-
84942892037
-
Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
-
9 Shi, J., et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526 (2015), 660–665.
-
(2015)
Nature
, vol.526
, pp. 660-665
-
-
Shi, J.1
-
10
-
-
84978128481
-
GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
-
10 Aglietti, R.A., et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 7858–7863.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. 7858-7863
-
-
Aglietti, R.A.1
-
11
-
-
84978419608
-
Pore-forming activity and structural autoinhibition of the gasdermin family
-
11 Ding, J., et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535 (2016), 111–116.
-
(2016)
Nature
, vol.535
, pp. 111-116
-
-
Ding, J.1
-
12
-
-
84978374487
-
Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
-
12 Liu, X., et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535 (2016), 153–158.
-
(2016)
Nature
, vol.535
, pp. 153-158
-
-
Liu, X.1
-
13
-
-
84982102736
-
GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
-
13 Sborgi, L., et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35 (2016), 1766–1778.
-
(2016)
EMBO J.
, vol.35
, pp. 1766-1778
-
-
Sborgi, L.1
-
14
-
-
84984822442
-
Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis
-
14 Chen, X., et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26 (2016), 1007–1020.
-
(2016)
Cell Res.
, vol.26
, pp. 1007-1020
-
-
Chen, X.1
-
15
-
-
0002655860
-
Thermodynamics of the interaction of proteins with lipid membranes
-
J.K. Merz B. Roux Birkhäuser
-
15 Heimburg, T., Marsh, D., Thermodynamics of the interaction of proteins with lipid membranes. Merz, J.K., Roux, B., (eds.) Biological Membranes, 1996, Birkhäuser, 405–462.
-
(1996)
Biological Membranes
, pp. 405-462
-
-
Heimburg, T.1
Marsh, D.2
-
16
-
-
34347262391
-
Bilayer thickness and membrane protein function: an energetic perspective
-
16 Andersen, O.S., Koeppe, R.E., Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36 (2007), 107–130.
-
(2007)
Annu. Rev. Biophys. Biomol. Struct.
, vol.36
, pp. 107-130
-
-
Andersen, O.S.1
Koeppe, R.E.2
-
17
-
-
84863984081
-
Biophysics of lipid bilayers containing oxidatively modified phospholipids: Insights from fluorescence and EPR experiments and from MD simulations
-
17 Jurkiewicz, P., et al. Biophysics of lipid bilayers containing oxidatively modified phospholipids: Insights from fluorescence and EPR experiments and from MD simulations. Biochim. Biophys. Acta 1818 (2012), 2388–2402.
-
(2012)
Biochim. Biophys. Acta
, vol.1818
, pp. 2388-2402
-
-
Jurkiewicz, P.1
-
18
-
-
84899444997
-
The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years
-
18 Nicolson, G.L., The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta 1838 (2014), 1451–1466.
-
(2014)
Biochim. Biophys. Acta
, vol.1838
, pp. 1451-1466
-
-
Nicolson, G.L.1
-
19
-
-
0026512314
-
Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface
-
19 Brown, D.A., Rose, J.K., Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68 (1992), 533–544.
-
(1992)
Cell
, vol.68
, pp. 533-544
-
-
Brown, D.A.1
Rose, J.K.2
-
20
-
-
62049084949
-
Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling
-
20 Zech, T., et al. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J. 28 (2009), 466–476.
-
(2009)
EMBO J.
, vol.28
, pp. 466-476
-
-
Zech, T.1
-
21
-
-
74849118341
-
Lipid rafts as a membrane-organizing principle
-
21 Lingwood, D., Simons, K., Lipid rafts as a membrane-organizing principle. Science 327 (2010), 46–50.
-
(2010)
Science
, vol.327
, pp. 46-50
-
-
Lingwood, D.1
Simons, K.2
-
22
-
-
17444405610
-
Structural basis of pore formation by the bacterial toxin pneumolysin
-
22 Tilley, S.J., et al. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121 (2005), 247–256.
-
(2005)
Cell
, vol.121
, pp. 247-256
-
-
Tilley, S.J.1
-
23
-
-
84955193035
-
Pore-forming toxins: ancient, but never really out of fashion
-
23 Peraro, M.D., van der Goot, F.G., Pore-forming toxins: ancient, but never really out of fashion. Nat. Rev. Microbiol. 14 (2016), 77–92.
-
(2016)
Nat. Rev. Microbiol.
, vol.14
, pp. 77-92
-
-
Peraro, M.D.1
van der Goot, F.G.2
-
24
-
-
84923279935
-
An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin
-
24 Wade, K.R., et al. An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 2204–2209.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 2204-2209
-
-
Wade, K.R.1
-
25
-
-
84923247291
-
Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins
-
25 Yamashita, D., et al. Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins. Nat. Commun., 5, 2014, 4897.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4897
-
-
Yamashita, D.1
-
26
-
-
77951805919
-
Inflammatory stimuli regulate caspase substrate profiles
-
26 Agard, N.J., et al. Inflammatory stimuli regulate caspase substrate profiles. Mol. Cell Proteomics 9 (2010), 880–893.
-
(2010)
Mol. Cell Proteomics
, vol.9
, pp. 880-893
-
-
Agard, N.J.1
-
27
-
-
84994558912
-
DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis
-
27 Okondo, M.C., et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat. Chem. Biol. 13 (2017), 46–53.
-
(2017)
Nat. Chem. Biol.
, vol.13
, pp. 46-53
-
-
Okondo, M.C.1
-
28
-
-
34247217928
-
Members of a novel gene family Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner
-
28 Tamura, M., et al. Members of a novel gene family Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 89 (2007), 618–629.
-
(2007)
Genomics
, vol.89
, pp. 618-629
-
-
Tamura, M.1
-
29
-
-
62349098335
-
Caspases: evolutionary aspects of their functions in vertebrates
-
29 Sakamaki, K., Satou, Y., Caspases: evolutionary aspects of their functions in vertebrates. J. Fish Biol. 74 (2009), 727–753.
-
(2009)
J. Fish Biol.
, vol.74
, pp. 727-753
-
-
Sakamaki, K.1
Satou, Y.2
-
30
-
-
84864868585
-
Evolution of inflammasome functions in vertebrates: inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1β
-
30 Angosto, D., et al. Evolution of inflammasome functions in vertebrates: inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1β. Innate Immun. 18 (2012), 815–824.
-
(2012)
Innate Immun.
, vol.18
, pp. 815-824
-
-
Angosto, D.1
-
31
-
-
84878237993
-
Activation and regulation of the inflammasomes
-
31 Latz, E., et al. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13 (2013), 397–411.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 397-411
-
-
Latz, E.1
-
32
-
-
84879596906
-
K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter
-
32 Muñoz-Planillo, R., et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38 (2013), 1142–1153.
-
(2013)
Immunity
, vol.38
, pp. 1142-1153
-
-
Muñoz-Planillo, R.1
-
33
-
-
34548027736
-
Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration
-
33 Petrilli, V., et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14 (2007), 1583–1589.
-
(2007)
Cell Death Differ.
, vol.14
, pp. 1583-1589
-
-
Petrilli, V.1
-
34
-
-
84943200249
-
Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux
-
34 Rühl, S., Broz, P., Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur. J Immunol. 45 (2015), 2927–2936.
-
(2015)
Eur. J Immunol.
, vol.45
, pp. 2927-2936
-
-
Rühl, S.1
Broz, P.2
-
35
-
-
17344371515
-
Nonsyndromic hearing impairment is associated with a mutation in DFNA5
-
35 Van Laer, L., et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat. Genetics 20 (1998), 194–197.
-
(1998)
Nat. Genetics
, vol.20
, pp. 194-197
-
-
Van Laer, L.1
-
36
-
-
33745577619
-
Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy
-
36 Delmaghani, S., et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat. Genetics 38 (2006), 770–778.
-
(2006)
Nat. Genetics
, vol.38
, pp. 770-778
-
-
Delmaghani, S.1
-
37
-
-
84892030409
-
Gasdermin superfamily: a novel gene family functioning in epithelial cells
-
J. Carrasco M. Mota Nova Science Publishers
-
37 Saeki, N., Sasaki, H., Gasdermin superfamily: a novel gene family functioning in epithelial cells. Carrasco, J., Mota, M., (eds.) Endothelium and Epithelium, 2012, Nova Science Publishers, 193–211.
-
(2012)
Endothelium and Epithelium
, pp. 193-211
-
-
Saeki, N.1
Sasaki, H.2
-
38
-
-
84883369152
-
Distribution of pejvakin in human spiral ganglion: an immunohistochemical study
-
38 Liu, W., et al. Distribution of pejvakin in human spiral ganglion: an immunohistochemical study. Cochlear Implants Int. 14 (2013), 225–231.
-
(2013)
Cochlear Implants Int.
, vol.14
, pp. 225-231
-
-
Liu, W.1
-
39
-
-
84959419447
-
Distinct expression patterns of causative genes responsible for hereditary progressive hearing loss in non-human primate cochlea
-
39 Hosoya, M., et al. Distinct expression patterns of causative genes responsible for hereditary progressive hearing loss in non-human primate cochlea. Sci. Rep., 6, 2016, 22250.
-
(2016)
Sci. Rep.
, vol.6
, pp. 22250
-
-
Hosoya, M.1
-
40
-
-
84935031669
-
N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting
-
40 Lin, P.-H., et al. N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting. J. Biomed. Sci. 22 (2015), 1–18.
-
(2015)
J. Biomed. Sci.
, vol.22
, pp. 1-18
-
-
Lin, P.-H.1
-
41
-
-
2942740946
-
DFNA5: hearing impairment exon instead of hearing impairment gene?
-
41 Van Laer, L., et al. DFNA5: hearing impairment exon instead of hearing impairment gene?. J. Med. Genet. 41 (2004), 401–406.
-
(2004)
J. Med. Genet.
, vol.41
, pp. 401-406
-
-
Van Laer, L.1
-
42
-
-
80052032972
-
The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein
-
42 de Beeck, K.O., The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur. J. Hum. Genet. 19 (2011), 965–973.
-
(2011)
Eur. J. Hum. Genet.
, vol.19
, pp. 965-973
-
-
de Beeck, K.O.1
-
43
-
-
84858201121
-
DFNA5, a gene involved in hearing loss and cancer: a review
-
43 de Beeck, K.O., et al. DFNA5, a gene involved in hearing loss and cancer: a review. Ann. Otol. Rhinol. Laryngol. 121 (2012), 197–207.
-
(2012)
Ann. Otol. Rhinol. Laryngol.
, vol.121
, pp. 197-207
-
-
de Beeck, K.O.1
-
44
-
-
84937425933
-
The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways
-
44 Van Rossom, S., et al. The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways. Front. Cell Neurosci. 9 (2015), 1–15.
-
(2015)
Front. Cell Neurosci.
, vol.9
, pp. 1-15
-
-
Van Rossom, S.1
-
45
-
-
84946234112
-
Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes
-
45 Delmaghani, S., et al. Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163 (2015), 894–906.
-
(2015)
Cell
, vol.163
, pp. 894-906
-
-
Delmaghani, S.1
-
46
-
-
62449133719
-
Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium
-
46 Saeki, N., et al. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer 48 (2009), 261–271.
-
(2009)
Genes Chromosomes Cancer
, vol.48
, pp. 261-271
-
-
Saeki, N.1
-
47
-
-
34948833165
-
GASDERMIN suppressed frequently in gastric cancer, is a target of LMO1 in TGF-|[beta]|-dependent apoptotic signalling
-
47 Saeki, N., et al. GASDERMIN suppressed frequently in gastric cancer, is a target of LMO1 in TGF-|[beta]|-dependent apoptotic signalling. Oncogene 26 (2007), 6488–6498.
-
(2007)
Oncogene
, vol.26
, pp. 6488-6498
-
-
Saeki, N.1
-
48
-
-
62449114842
-
Genetic variation in ORM1-like 3 (ORMDL3) and gasdermin-like (GSDML) and childhood asthma
-
48 Wu, H., et al. Genetic variation in ORM1-like 3 (ORMDL3) and gasdermin-like (GSDML) and childhood asthma. Allergy 64 (2009), 629–635.
-
(2009)
Allergy
, vol.64
, pp. 629-635
-
-
Wu, H.1
-
49
-
-
67650081844
-
Expression of GSDML associates with tumor progression in uterine cervix cancer
-
49 Sun, Q., et al. Expression of GSDML associates with tumor progression in uterine cervix cancer. Transl. Oncol. 1 (2008), 73–83.
-
(2008)
Transl. Oncol.
, vol.1
, pp. 73-83
-
-
Sun, Q.1
-
50
-
-
84899877856
-
Gasdermin-B promotes invasion and metastasis in breast cancer cells
-
50 Hergueta-Redondo, M., Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS One, 9, 2014, e90099.
-
(2014)
PLoS One
, vol.9
, pp. e90099
-
-
Hergueta-Redondo, M.1
-
51
-
-
84984870498
-
Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer
-
51 Hergueta-Redondo, M., et al. Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer. Oncotarget 7 (2016), 56295–56308.
-
(2016)
Oncotarget
, vol.7
, pp. 56295-56308
-
-
Hergueta-Redondo, M.1
-
52
-
-
0035076476
-
Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells
-
52 Watabe, K., et al. Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Cancer Sci. 92 (2001), 140–151.
-
(2001)
Cancer Sci.
, vol.92
, pp. 140-151
-
-
Watabe, K.1
-
53
-
-
0035283318
-
Pro-inflammatory programmed cell death
-
53 Cookson, B.T., Brennan, M.A., Pro-inflammatory programmed cell death. Trends Microbiol. 9 (2001), 113–114.
-
(2001)
Trends Microbiol.
, vol.9
, pp. 113-114
-
-
Cookson, B.T.1
Brennan, M.A.2
-
54
-
-
84927745897
-
Pyroptotic cell death defends against intracellular pathogens
-
54 Jorgensen, I., Miao, E.A., Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 265 (2015), 130–142.
-
(2015)
Immunol. Rev.
, vol.265
, pp. 130-142
-
-
Jorgensen, I.1
Miao, E.A.2
-
55
-
-
58449083290
-
Pyroptosis: host cell death and inflammation
-
55 Bergsbaken, T., et al. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7 (2009), 99–109.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 99-109
-
-
Bergsbaken, T.1
-
56
-
-
78449269290
-
Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria
-
56 Miao, E.A., et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11 (2010), 1136–1142.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 1136-1142
-
-
Miao, E.A.1
-
57
-
-
84927925422
-
Revisiting caspases in sepsis
-
57 Aziz, M., et al. Revisiting caspases in sepsis. Cell Death Dis., 5, 2014, e1526.
-
(2014)
Cell Death Dis.
, vol.5
, pp. e1526
-
-
Aziz, M.1
-
58
-
-
84874509753
-
Current trends in inflammatory and immunomodulatory mediators in sepsis
-
58 Aziz, M., et al. Current trends in inflammatory and immunomodulatory mediators in sepsis. J. Leukoc. Biol. 93 (2013), 329–342.
-
(2013)
J. Leukoc. Biol.
, vol.93
, pp. 329-342
-
-
Aziz, M.1
-
59
-
-
84881542521
-
Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection
-
59 Aachoui, Y., et al. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr. Opin. Microbiol. 16 (2013), 319–326.
-
(2013)
Curr. Opin. Microbiol.
, vol.16
, pp. 319-326
-
-
Aachoui, Y.1
-
60
-
-
33749576792
-
Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages
-
60 Fink, S.L., Cookson, B.T., Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8 (2006), 1812–1825.
-
(2006)
Cell. Microbiol.
, vol.8
, pp. 1812-1825
-
-
Fink, S.L.1
Cookson, B.T.2
-
61
-
-
84923119242
-
Old, new and emerging functions of caspases
-
61 Shalini, S., et al. Old, new and emerging functions of caspases. Cell Death Differ. 22 (2015), 526–539.
-
(2015)
Cell Death Differ.
, vol.22
, pp. 526-539
-
-
Shalini, S.1
-
62
-
-
77951498166
-
Inflammatory caspases in innate immunity and inflammation
-
62 Yazdi, A.S., et al. Inflammatory caspases in innate immunity and inflammation. J. Innate Immun. 2 (2010), 228–237.
-
(2010)
J. Innate Immun.
, vol.2
, pp. 228-237
-
-
Yazdi, A.S.1
-
63
-
-
84922470294
-
Inflammatory caspases: key regulators of inflammation and cell death
-
63 Fernández, D.J., Lamkanfi, M., Inflammatory caspases: key regulators of inflammation and cell death. Biol. Chem. 396 (2015), 193–203.
-
(2015)
Biol. Chem.
, vol.396
, pp. 193-203
-
-
Fernández, D.J.1
Lamkanfi, M.2
-
64
-
-
37749030247
-
A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins
-
64 Kersse, K., et al. A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem. Soc. Trans. 35 (2007), 1508–1511.
-
(2007)
Biochem. Soc. Trans.
, vol.35
, pp. 1508-1511
-
-
Kersse, K.1
-
65
-
-
2542457495
-
Inflammatory caspases
-
65 Martinon, F., Tschopp, J., Inflammatory caspases. Cell 117 (2004), 561–574.
-
(2004)
Cell
, vol.117
, pp. 561-574
-
-
Martinon, F.1
Tschopp, J.2
-
66
-
-
84930225289
-
Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens
-
66 Casson, C.N., et al. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 6688–6693.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 6688-6693
-
-
Casson, C.N.1
-
67
-
-
0036294646
-
Human caspase 12 has acquired deleterious mutations
-
67 Fischer, H., et al. Human caspase 12 has acquired deleterious mutations. Biochem. Biophys. Res. Commun. 293 (2002), 722–726.
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.293
, pp. 722-726
-
-
Fischer, H.1
-
68
-
-
34147165459
-
Essential role for caspase-8 in Toll-like receptors and NFκB signaling
-
68 Lemmers, B., et al. Essential role for caspase-8 in Toll-like receptors and NFκB signaling. J. Biol. Chem. 282 (2007), 7416–7423.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 7416-7423
-
-
Lemmers, B.1
-
69
-
-
84894271641
-
FADD and Caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes
-
69 Gurung, P., et al. FADD and Caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 192 (2014), 1835–1846.
-
(2014)
J. Immunol.
, vol.192
, pp. 1835-1846
-
-
Gurung, P.1
-
70
-
-
84918802996
-
Novel roles for caspase-8 in IL-1β and inflammasome regulation
-
70 Gurung, P., Kanneganti, T.-D., Novel roles for caspase-8 in IL-1β and inflammasome regulation. Am. J. Pathol. 185 (2015), 17–25.
-
(2015)
Am. J. Pathol.
, vol.185
, pp. 17-25
-
-
Gurung, P.1
Kanneganti, T.-D.2
-
71
-
-
84927729737
-
Caspase-8 functions as a key mediator of inflammation and pro-IL-1β processing via both canonical and non-canonical pathways
-
71 Monie, T.P., Bryant, C.E., Caspase-8 functions as a key mediator of inflammation and pro-IL-1β processing via both canonical and non-canonical pathways. Immunol. Rev. 265 (2015), 181–193.
-
(2015)
Immunol. Rev.
, vol.265
, pp. 181-193
-
-
Monie, T.P.1
Bryant, C.E.2
-
72
-
-
85016388057
-
Caspase-8: not so silently deadly
-
72 Feltham, R., et al. Caspase-8: not so silently deadly. Clin. Transl. Immunol., 6, 2017, e124.
-
(2017)
Clin. Transl. Immunol.
, vol.6
, pp. e124
-
-
Feltham, R.1
-
73
-
-
58149287750
-
Targeted peptidecentric proteomics reveals Caspase-7 as a substrate of the Caspase-1 inflammasomes
-
73 Lamkanfi, M., et al. Targeted peptidecentric proteomics reveals Caspase-7 as a substrate of the Caspase-1 inflammasomes. Mol. Cell Proteomics 7 (2008), 2350–2363.
-
(2008)
Mol. Cell Proteomics
, vol.7
, pp. 2350-2363
-
-
Lamkanfi, M.1
-
74
-
-
66349093381
-
Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection
-
74 Akhter, A., et al. Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog, 5, 2009, e1000361.
-
(2009)
PLoS Pathog
, vol.5
, pp. e1000361
-
-
Akhter, A.1
-
75
-
-
84860325913
-
Inflammasome-Activated Caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-κB target genes
-
75 Erener, S., et al. Inflammasome-Activated Caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-κB target genes. Mol. Cell 46 (2012), 200–211.
-
(2012)
Mol. Cell
, vol.46
, pp. 200-211
-
-
Erener, S.1
-
76
-
-
0036671894
-
The inflammasome
-
76 Martinon, F., et al. The inflammasome. Mol. Cell 10 (2002), 417–426.
-
(2002)
Mol. Cell
, vol.10
, pp. 417-426
-
-
Martinon, F.1
-
77
-
-
84976516826
-
Inflammasomes: mechanism of assembly, regulation and signalling
-
77 Broz, P., Dixit, V.M., Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16 (2016), 407–420.
-
(2016)
Nat. Rev. Immunol.
, vol.16
, pp. 407-420
-
-
Broz, P.1
Dixit, V.M.2
-
79
-
-
84925047701
-
NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases
-
79 Abderrazak, A., et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 4 (2015), 296–307.
-
(2015)
Redox Biol.
, vol.4
, pp. 296-307
-
-
Abderrazak, A.1
-
80
-
-
84927724336
-
Initiation and perpetuation of NLRP3 inflammasome activation and assembly
-
80 Elliott, E.I., Sutterwala, F.S., Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol. Rev. 265 (2015), 35–52.
-
(2015)
Immunol. Rev.
, vol.265
, pp. 35-52
-
-
Elliott, E.I.1
Sutterwala, F.S.2
-
81
-
-
84921498910
-
The NAIP/NLRC4 inflammasomes
-
81 Vance, R.E., The NAIP/NLRC4 inflammasomes. Curr. Opin. Immunol. 32 (2015), 84–89.
-
(2015)
Curr. Opin. Immunol.
, vol.32
, pp. 84-89
-
-
Vance, R.E.1
-
82
-
-
63649133278
-
AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
-
82 Hornung, V., et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458 (2009), 514–518.
-
(2009)
Nature
, vol.458
, pp. 514-518
-
-
Hornung, V.1
-
83
-
-
77953116282
-
Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis
-
83 Jones, J.W., et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 9771–9776.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 9771-9776
-
-
Jones, J.W.1
-
84
-
-
84907270863
-
Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome
-
84 Xu, H., et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513 (2014), 237–241.
-
(2014)
Nature
, vol.513
, pp. 237-241
-
-
Xu, H.1
-
85
-
-
70450250064
-
Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC)
-
85 de Alba, E., Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). J. Biol. Chem. 284 (2009), 32932–32941.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 32932-32941
-
-
de Alba, E.1
-
86
-
-
84952630550
-
Converging roles of caspases in inflammasome activation, cell death and innate immunity
-
86 Man, S.M., Kanneganti, T.-D., Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 16 (2016), 7–21.
-
(2016)
Nat. Rev. Immunol.
, vol.16
, pp. 7-21
-
-
Man, S.M.1
Kanneganti, T.-D.2
|