메뉴 건너뛰기




Volumn 38, Issue 4, 2017, Pages 261-271

Recent Insights into the Molecular Mechanisms Underlying Pyroptosis and Gasdermin Family Functions

Author keywords

[No Author keywords available]

Indexed keywords

CASPASE 11; CELL PROTEIN; GASDERMIN D PROTEIN; INFLAMMASOME; INTERLEUKIN 1BETA CONVERTING ENZYME; LIPOPOLYSACCHARIDE; UNCLASSIFIED DRUG; CASP11 PROTEIN, MOUSE; CASPASE; GSDMD PROTEIN, HUMAN; TUMOR PROTEIN;

EID: 85012024592     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2017.01.003     Document Type: Review
Times cited : (320)

References (86)
  • 1
    • 77950542752 scopus 로고    scopus 로고
    • Targeting Toll-like receptors: emerging therapeutics?
    • 1 Hennessy, E.J., et al. Targeting Toll-like receptors: emerging therapeutics?. Nat. Rev. Drug Discov. 9 (2010), 293–307.
    • (2010) Nat. Rev. Drug Discov. , vol.9 , pp. 293-307
    • Hennessy, E.J.1
  • 2
    • 84883790050 scopus 로고    scopus 로고
    • Cytoplasmic LPS activates Caspase-11: implications in TLR4-independent endotoxic shock
    • 2 Hagar, J.A., et al. Cytoplasmic LPS activates Caspase-11: implications in TLR4-independent endotoxic shock. Science 341 (2013), 1250–1253.
    • (2013) Science , vol.341 , pp. 1250-1253
    • Hagar, J.A.1
  • 3
    • 84883775365 scopus 로고    scopus 로고
    • Noncanonical inflammasome activation by intracellular LPS independent of TLR4
    • 3 Kayagaki, N., et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341 (2013), 1246–1249.
    • (2013) Science , vol.341 , pp. 1246-1249
    • Kayagaki, N.1
  • 4
    • 80455176839 scopus 로고    scopus 로고
    • Non-canonical inflammasome activation targets caspase-11
    • 4 Kayagaki, N., et al. Non-canonical inflammasome activation targets caspase-11. Nature 479 (2011), 117–121.
    • (2011) Nature , vol.479 , pp. 117-121
    • Kayagaki, N.1
  • 5
    • 84906571225 scopus 로고    scopus 로고
    • Inflammatory caspases are innate immune receptors for intracellular LPS
    • 5 Shi, J., et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514 (2014), 187–192.
    • (2014) Nature , vol.514 , pp. 187-192
    • Shi, J.1
  • 6
    • 84874189388 scopus 로고    scopus 로고
    • Caspase-11 protects against bacteria that escape the vacuole
    • 6 Aachoui, Y., et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339 (2013), 975–978.
    • (2013) Science , vol.339 , pp. 975-978
    • Aachoui, Y.1
  • 7
    • 84911992879 scopus 로고    scopus 로고
    • Noncanonical inflammasome activation of Caspase-4/Caspase-11 mediates epithelial defenses against enteric bacterial pathogens
    • 7 Knodler, L.A., et al. Noncanonical inflammasome activation of Caspase-4/Caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe. 16 (2014), 249–256.
    • (2014) Cell Host Microbe. , vol.16 , pp. 249-256
    • Knodler, L.A.1
  • 8
    • 84942856523 scopus 로고    scopus 로고
    • Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling
    • 8 Kayagaki, N., et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling. Nature 526 (2015), 666–671.
    • (2015) Nature , vol.526 , pp. 666-671
    • Kayagaki, N.1
  • 9
    • 84942892037 scopus 로고    scopus 로고
    • Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
    • 9 Shi, J., et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526 (2015), 660–665.
    • (2015) Nature , vol.526 , pp. 660-665
    • Shi, J.1
  • 10
    • 84978128481 scopus 로고    scopus 로고
    • GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
    • 10 Aglietti, R.A., et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 7858–7863.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. 7858-7863
    • Aglietti, R.A.1
  • 11
    • 84978419608 scopus 로고    scopus 로고
    • Pore-forming activity and structural autoinhibition of the gasdermin family
    • 11 Ding, J., et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535 (2016), 111–116.
    • (2016) Nature , vol.535 , pp. 111-116
    • Ding, J.1
  • 12
    • 84978374487 scopus 로고    scopus 로고
    • Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
    • 12 Liu, X., et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535 (2016), 153–158.
    • (2016) Nature , vol.535 , pp. 153-158
    • Liu, X.1
  • 13
    • 84982102736 scopus 로고    scopus 로고
    • GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
    • 13 Sborgi, L., et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35 (2016), 1766–1778.
    • (2016) EMBO J. , vol.35 , pp. 1766-1778
    • Sborgi, L.1
  • 14
    • 84984822442 scopus 로고    scopus 로고
    • Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis
    • 14 Chen, X., et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26 (2016), 1007–1020.
    • (2016) Cell Res. , vol.26 , pp. 1007-1020
    • Chen, X.1
  • 15
    • 0002655860 scopus 로고    scopus 로고
    • Thermodynamics of the interaction of proteins with lipid membranes
    • J.K. Merz B. Roux Birkhäuser
    • 15 Heimburg, T., Marsh, D., Thermodynamics of the interaction of proteins with lipid membranes. Merz, J.K., Roux, B., (eds.) Biological Membranes, 1996, Birkhäuser, 405–462.
    • (1996) Biological Membranes , pp. 405-462
    • Heimburg, T.1    Marsh, D.2
  • 16
    • 34347262391 scopus 로고    scopus 로고
    • Bilayer thickness and membrane protein function: an energetic perspective
    • 16 Andersen, O.S., Koeppe, R.E., Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36 (2007), 107–130.
    • (2007) Annu. Rev. Biophys. Biomol. Struct. , vol.36 , pp. 107-130
    • Andersen, O.S.1    Koeppe, R.E.2
  • 17
    • 84863984081 scopus 로고    scopus 로고
    • Biophysics of lipid bilayers containing oxidatively modified phospholipids: Insights from fluorescence and EPR experiments and from MD simulations
    • 17 Jurkiewicz, P., et al. Biophysics of lipid bilayers containing oxidatively modified phospholipids: Insights from fluorescence and EPR experiments and from MD simulations. Biochim. Biophys. Acta 1818 (2012), 2388–2402.
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 2388-2402
    • Jurkiewicz, P.1
  • 18
    • 84899444997 scopus 로고    scopus 로고
    • The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years
    • 18 Nicolson, G.L., The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta 1838 (2014), 1451–1466.
    • (2014) Biochim. Biophys. Acta , vol.1838 , pp. 1451-1466
    • Nicolson, G.L.1
  • 19
    • 0026512314 scopus 로고
    • Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface
    • 19 Brown, D.A., Rose, J.K., Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68 (1992), 533–544.
    • (1992) Cell , vol.68 , pp. 533-544
    • Brown, D.A.1    Rose, J.K.2
  • 20
    • 62049084949 scopus 로고    scopus 로고
    • Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling
    • 20 Zech, T., et al. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J. 28 (2009), 466–476.
    • (2009) EMBO J. , vol.28 , pp. 466-476
    • Zech, T.1
  • 21
    • 74849118341 scopus 로고    scopus 로고
    • Lipid rafts as a membrane-organizing principle
    • 21 Lingwood, D., Simons, K., Lipid rafts as a membrane-organizing principle. Science 327 (2010), 46–50.
    • (2010) Science , vol.327 , pp. 46-50
    • Lingwood, D.1    Simons, K.2
  • 22
    • 17444405610 scopus 로고    scopus 로고
    • Structural basis of pore formation by the bacterial toxin pneumolysin
    • 22 Tilley, S.J., et al. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121 (2005), 247–256.
    • (2005) Cell , vol.121 , pp. 247-256
    • Tilley, S.J.1
  • 23
    • 84955193035 scopus 로고    scopus 로고
    • Pore-forming toxins: ancient, but never really out of fashion
    • 23 Peraro, M.D., van der Goot, F.G., Pore-forming toxins: ancient, but never really out of fashion. Nat. Rev. Microbiol. 14 (2016), 77–92.
    • (2016) Nat. Rev. Microbiol. , vol.14 , pp. 77-92
    • Peraro, M.D.1    van der Goot, F.G.2
  • 24
    • 84923279935 scopus 로고    scopus 로고
    • An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin
    • 24 Wade, K.R., et al. An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 2204–2209.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 2204-2209
    • Wade, K.R.1
  • 25
    • 84923247291 scopus 로고    scopus 로고
    • Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins
    • 25 Yamashita, D., et al. Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins. Nat. Commun., 5, 2014, 4897.
    • (2014) Nat. Commun. , vol.5 , pp. 4897
    • Yamashita, D.1
  • 26
    • 77951805919 scopus 로고    scopus 로고
    • Inflammatory stimuli regulate caspase substrate profiles
    • 26 Agard, N.J., et al. Inflammatory stimuli regulate caspase substrate profiles. Mol. Cell Proteomics 9 (2010), 880–893.
    • (2010) Mol. Cell Proteomics , vol.9 , pp. 880-893
    • Agard, N.J.1
  • 27
    • 84994558912 scopus 로고    scopus 로고
    • DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis
    • 27 Okondo, M.C., et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat. Chem. Biol. 13 (2017), 46–53.
    • (2017) Nat. Chem. Biol. , vol.13 , pp. 46-53
    • Okondo, M.C.1
  • 28
    • 34247217928 scopus 로고    scopus 로고
    • Members of a novel gene family Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner
    • 28 Tamura, M., et al. Members of a novel gene family Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 89 (2007), 618–629.
    • (2007) Genomics , vol.89 , pp. 618-629
    • Tamura, M.1
  • 29
    • 62349098335 scopus 로고    scopus 로고
    • Caspases: evolutionary aspects of their functions in vertebrates
    • 29 Sakamaki, K., Satou, Y., Caspases: evolutionary aspects of their functions in vertebrates. J. Fish Biol. 74 (2009), 727–753.
    • (2009) J. Fish Biol. , vol.74 , pp. 727-753
    • Sakamaki, K.1    Satou, Y.2
  • 30
    • 84864868585 scopus 로고    scopus 로고
    • Evolution of inflammasome functions in vertebrates: inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1β
    • 30 Angosto, D., et al. Evolution of inflammasome functions in vertebrates: inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1β. Innate Immun. 18 (2012), 815–824.
    • (2012) Innate Immun. , vol.18 , pp. 815-824
    • Angosto, D.1
  • 31
    • 84878237993 scopus 로고    scopus 로고
    • Activation and regulation of the inflammasomes
    • 31 Latz, E., et al. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13 (2013), 397–411.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 397-411
    • Latz, E.1
  • 32
    • 84879596906 scopus 로고    scopus 로고
    • K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter
    • 32 Muñoz-Planillo, R., et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38 (2013), 1142–1153.
    • (2013) Immunity , vol.38 , pp. 1142-1153
    • Muñoz-Planillo, R.1
  • 33
    • 34548027736 scopus 로고    scopus 로고
    • Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration
    • 33 Petrilli, V., et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14 (2007), 1583–1589.
    • (2007) Cell Death Differ. , vol.14 , pp. 1583-1589
    • Petrilli, V.1
  • 34
    • 84943200249 scopus 로고    scopus 로고
    • Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux
    • 34 Rühl, S., Broz, P., Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur. J Immunol. 45 (2015), 2927–2936.
    • (2015) Eur. J Immunol. , vol.45 , pp. 2927-2936
    • Rühl, S.1    Broz, P.2
  • 35
    • 17344371515 scopus 로고    scopus 로고
    • Nonsyndromic hearing impairment is associated with a mutation in DFNA5
    • 35 Van Laer, L., et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat. Genetics 20 (1998), 194–197.
    • (1998) Nat. Genetics , vol.20 , pp. 194-197
    • Van Laer, L.1
  • 36
    • 33745577619 scopus 로고    scopus 로고
    • Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy
    • 36 Delmaghani, S., et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat. Genetics 38 (2006), 770–778.
    • (2006) Nat. Genetics , vol.38 , pp. 770-778
    • Delmaghani, S.1
  • 37
    • 84892030409 scopus 로고    scopus 로고
    • Gasdermin superfamily: a novel gene family functioning in epithelial cells
    • J. Carrasco M. Mota Nova Science Publishers
    • 37 Saeki, N., Sasaki, H., Gasdermin superfamily: a novel gene family functioning in epithelial cells. Carrasco, J., Mota, M., (eds.) Endothelium and Epithelium, 2012, Nova Science Publishers, 193–211.
    • (2012) Endothelium and Epithelium , pp. 193-211
    • Saeki, N.1    Sasaki, H.2
  • 38
    • 84883369152 scopus 로고    scopus 로고
    • Distribution of pejvakin in human spiral ganglion: an immunohistochemical study
    • 38 Liu, W., et al. Distribution of pejvakin in human spiral ganglion: an immunohistochemical study. Cochlear Implants Int. 14 (2013), 225–231.
    • (2013) Cochlear Implants Int. , vol.14 , pp. 225-231
    • Liu, W.1
  • 39
    • 84959419447 scopus 로고    scopus 로고
    • Distinct expression patterns of causative genes responsible for hereditary progressive hearing loss in non-human primate cochlea
    • 39 Hosoya, M., et al. Distinct expression patterns of causative genes responsible for hereditary progressive hearing loss in non-human primate cochlea. Sci. Rep., 6, 2016, 22250.
    • (2016) Sci. Rep. , vol.6 , pp. 22250
    • Hosoya, M.1
  • 40
    • 84935031669 scopus 로고    scopus 로고
    • N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting
    • 40 Lin, P.-H., et al. N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting. J. Biomed. Sci. 22 (2015), 1–18.
    • (2015) J. Biomed. Sci. , vol.22 , pp. 1-18
    • Lin, P.-H.1
  • 41
    • 2942740946 scopus 로고    scopus 로고
    • DFNA5: hearing impairment exon instead of hearing impairment gene?
    • 41 Van Laer, L., et al. DFNA5: hearing impairment exon instead of hearing impairment gene?. J. Med. Genet. 41 (2004), 401–406.
    • (2004) J. Med. Genet. , vol.41 , pp. 401-406
    • Van Laer, L.1
  • 42
    • 80052032972 scopus 로고    scopus 로고
    • The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein
    • 42 de Beeck, K.O., The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur. J. Hum. Genet. 19 (2011), 965–973.
    • (2011) Eur. J. Hum. Genet. , vol.19 , pp. 965-973
    • de Beeck, K.O.1
  • 43
    • 84858201121 scopus 로고    scopus 로고
    • DFNA5, a gene involved in hearing loss and cancer: a review
    • 43 de Beeck, K.O., et al. DFNA5, a gene involved in hearing loss and cancer: a review. Ann. Otol. Rhinol. Laryngol. 121 (2012), 197–207.
    • (2012) Ann. Otol. Rhinol. Laryngol. , vol.121 , pp. 197-207
    • de Beeck, K.O.1
  • 44
    • 84937425933 scopus 로고    scopus 로고
    • The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways
    • 44 Van Rossom, S., et al. The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways. Front. Cell Neurosci. 9 (2015), 1–15.
    • (2015) Front. Cell Neurosci. , vol.9 , pp. 1-15
    • Van Rossom, S.1
  • 45
    • 84946234112 scopus 로고    scopus 로고
    • Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes
    • 45 Delmaghani, S., et al. Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163 (2015), 894–906.
    • (2015) Cell , vol.163 , pp. 894-906
    • Delmaghani, S.1
  • 46
    • 62449133719 scopus 로고    scopus 로고
    • Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium
    • 46 Saeki, N., et al. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer 48 (2009), 261–271.
    • (2009) Genes Chromosomes Cancer , vol.48 , pp. 261-271
    • Saeki, N.1
  • 47
    • 34948833165 scopus 로고    scopus 로고
    • GASDERMIN suppressed frequently in gastric cancer, is a target of LMO1 in TGF-|[beta]|-dependent apoptotic signalling
    • 47 Saeki, N., et al. GASDERMIN suppressed frequently in gastric cancer, is a target of LMO1 in TGF-|[beta]|-dependent apoptotic signalling. Oncogene 26 (2007), 6488–6498.
    • (2007) Oncogene , vol.26 , pp. 6488-6498
    • Saeki, N.1
  • 48
    • 62449114842 scopus 로고    scopus 로고
    • Genetic variation in ORM1-like 3 (ORMDL3) and gasdermin-like (GSDML) and childhood asthma
    • 48 Wu, H., et al. Genetic variation in ORM1-like 3 (ORMDL3) and gasdermin-like (GSDML) and childhood asthma. Allergy 64 (2009), 629–635.
    • (2009) Allergy , vol.64 , pp. 629-635
    • Wu, H.1
  • 49
    • 67650081844 scopus 로고    scopus 로고
    • Expression of GSDML associates with tumor progression in uterine cervix cancer
    • 49 Sun, Q., et al. Expression of GSDML associates with tumor progression in uterine cervix cancer. Transl. Oncol. 1 (2008), 73–83.
    • (2008) Transl. Oncol. , vol.1 , pp. 73-83
    • Sun, Q.1
  • 50
    • 84899877856 scopus 로고    scopus 로고
    • Gasdermin-B promotes invasion and metastasis in breast cancer cells
    • 50 Hergueta-Redondo, M., Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS One, 9, 2014, e90099.
    • (2014) PLoS One , vol.9 , pp. e90099
    • Hergueta-Redondo, M.1
  • 51
    • 84984870498 scopus 로고    scopus 로고
    • Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer
    • 51 Hergueta-Redondo, M., et al. Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer. Oncotarget 7 (2016), 56295–56308.
    • (2016) Oncotarget , vol.7 , pp. 56295-56308
    • Hergueta-Redondo, M.1
  • 52
    • 0035076476 scopus 로고    scopus 로고
    • Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells
    • 52 Watabe, K., et al. Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Cancer Sci. 92 (2001), 140–151.
    • (2001) Cancer Sci. , vol.92 , pp. 140-151
    • Watabe, K.1
  • 53
    • 0035283318 scopus 로고    scopus 로고
    • Pro-inflammatory programmed cell death
    • 53 Cookson, B.T., Brennan, M.A., Pro-inflammatory programmed cell death. Trends Microbiol. 9 (2001), 113–114.
    • (2001) Trends Microbiol. , vol.9 , pp. 113-114
    • Cookson, B.T.1    Brennan, M.A.2
  • 54
    • 84927745897 scopus 로고    scopus 로고
    • Pyroptotic cell death defends against intracellular pathogens
    • 54 Jorgensen, I., Miao, E.A., Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 265 (2015), 130–142.
    • (2015) Immunol. Rev. , vol.265 , pp. 130-142
    • Jorgensen, I.1    Miao, E.A.2
  • 55
    • 58449083290 scopus 로고    scopus 로고
    • Pyroptosis: host cell death and inflammation
    • 55 Bergsbaken, T., et al. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7 (2009), 99–109.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 99-109
    • Bergsbaken, T.1
  • 56
    • 78449269290 scopus 로고    scopus 로고
    • Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria
    • 56 Miao, E.A., et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11 (2010), 1136–1142.
    • (2010) Nat. Immunol. , vol.11 , pp. 1136-1142
    • Miao, E.A.1
  • 57
    • 84927925422 scopus 로고    scopus 로고
    • Revisiting caspases in sepsis
    • 57 Aziz, M., et al. Revisiting caspases in sepsis. Cell Death Dis., 5, 2014, e1526.
    • (2014) Cell Death Dis. , vol.5 , pp. e1526
    • Aziz, M.1
  • 58
    • 84874509753 scopus 로고    scopus 로고
    • Current trends in inflammatory and immunomodulatory mediators in sepsis
    • 58 Aziz, M., et al. Current trends in inflammatory and immunomodulatory mediators in sepsis. J. Leukoc. Biol. 93 (2013), 329–342.
    • (2013) J. Leukoc. Biol. , vol.93 , pp. 329-342
    • Aziz, M.1
  • 59
    • 84881542521 scopus 로고    scopus 로고
    • Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection
    • 59 Aachoui, Y., et al. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr. Opin. Microbiol. 16 (2013), 319–326.
    • (2013) Curr. Opin. Microbiol. , vol.16 , pp. 319-326
    • Aachoui, Y.1
  • 60
    • 33749576792 scopus 로고    scopus 로고
    • Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages
    • 60 Fink, S.L., Cookson, B.T., Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8 (2006), 1812–1825.
    • (2006) Cell. Microbiol. , vol.8 , pp. 1812-1825
    • Fink, S.L.1    Cookson, B.T.2
  • 61
    • 84923119242 scopus 로고    scopus 로고
    • Old, new and emerging functions of caspases
    • 61 Shalini, S., et al. Old, new and emerging functions of caspases. Cell Death Differ. 22 (2015), 526–539.
    • (2015) Cell Death Differ. , vol.22 , pp. 526-539
    • Shalini, S.1
  • 62
    • 77951498166 scopus 로고    scopus 로고
    • Inflammatory caspases in innate immunity and inflammation
    • 62 Yazdi, A.S., et al. Inflammatory caspases in innate immunity and inflammation. J. Innate Immun. 2 (2010), 228–237.
    • (2010) J. Innate Immun. , vol.2 , pp. 228-237
    • Yazdi, A.S.1
  • 63
    • 84922470294 scopus 로고    scopus 로고
    • Inflammatory caspases: key regulators of inflammation and cell death
    • 63 Fernández, D.J., Lamkanfi, M., Inflammatory caspases: key regulators of inflammation and cell death. Biol. Chem. 396 (2015), 193–203.
    • (2015) Biol. Chem. , vol.396 , pp. 193-203
    • Fernández, D.J.1    Lamkanfi, M.2
  • 64
    • 37749030247 scopus 로고    scopus 로고
    • A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins
    • 64 Kersse, K., et al. A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem. Soc. Trans. 35 (2007), 1508–1511.
    • (2007) Biochem. Soc. Trans. , vol.35 , pp. 1508-1511
    • Kersse, K.1
  • 65
    • 2542457495 scopus 로고    scopus 로고
    • Inflammatory caspases
    • 65 Martinon, F., Tschopp, J., Inflammatory caspases. Cell 117 (2004), 561–574.
    • (2004) Cell , vol.117 , pp. 561-574
    • Martinon, F.1    Tschopp, J.2
  • 66
    • 84930225289 scopus 로고    scopus 로고
    • Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens
    • 66 Casson, C.N., et al. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 6688–6693.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 6688-6693
    • Casson, C.N.1
  • 67
    • 0036294646 scopus 로고    scopus 로고
    • Human caspase 12 has acquired deleterious mutations
    • 67 Fischer, H., et al. Human caspase 12 has acquired deleterious mutations. Biochem. Biophys. Res. Commun. 293 (2002), 722–726.
    • (2002) Biochem. Biophys. Res. Commun. , vol.293 , pp. 722-726
    • Fischer, H.1
  • 68
    • 34147165459 scopus 로고    scopus 로고
    • Essential role for caspase-8 in Toll-like receptors and NFκB signaling
    • 68 Lemmers, B., et al. Essential role for caspase-8 in Toll-like receptors and NFκB signaling. J. Biol. Chem. 282 (2007), 7416–7423.
    • (2007) J. Biol. Chem. , vol.282 , pp. 7416-7423
    • Lemmers, B.1
  • 69
    • 84894271641 scopus 로고    scopus 로고
    • FADD and Caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes
    • 69 Gurung, P., et al. FADD and Caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 192 (2014), 1835–1846.
    • (2014) J. Immunol. , vol.192 , pp. 1835-1846
    • Gurung, P.1
  • 70
    • 84918802996 scopus 로고    scopus 로고
    • Novel roles for caspase-8 in IL-1β and inflammasome regulation
    • 70 Gurung, P., Kanneganti, T.-D., Novel roles for caspase-8 in IL-1β and inflammasome regulation. Am. J. Pathol. 185 (2015), 17–25.
    • (2015) Am. J. Pathol. , vol.185 , pp. 17-25
    • Gurung, P.1    Kanneganti, T.-D.2
  • 71
    • 84927729737 scopus 로고    scopus 로고
    • Caspase-8 functions as a key mediator of inflammation and pro-IL-1β processing via both canonical and non-canonical pathways
    • 71 Monie, T.P., Bryant, C.E., Caspase-8 functions as a key mediator of inflammation and pro-IL-1β processing via both canonical and non-canonical pathways. Immunol. Rev. 265 (2015), 181–193.
    • (2015) Immunol. Rev. , vol.265 , pp. 181-193
    • Monie, T.P.1    Bryant, C.E.2
  • 72
    • 85016388057 scopus 로고    scopus 로고
    • Caspase-8: not so silently deadly
    • 72 Feltham, R., et al. Caspase-8: not so silently deadly. Clin. Transl. Immunol., 6, 2017, e124.
    • (2017) Clin. Transl. Immunol. , vol.6 , pp. e124
    • Feltham, R.1
  • 73
    • 58149287750 scopus 로고    scopus 로고
    • Targeted peptidecentric proteomics reveals Caspase-7 as a substrate of the Caspase-1 inflammasomes
    • 73 Lamkanfi, M., et al. Targeted peptidecentric proteomics reveals Caspase-7 as a substrate of the Caspase-1 inflammasomes. Mol. Cell Proteomics 7 (2008), 2350–2363.
    • (2008) Mol. Cell Proteomics , vol.7 , pp. 2350-2363
    • Lamkanfi, M.1
  • 74
    • 66349093381 scopus 로고    scopus 로고
    • Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection
    • 74 Akhter, A., et al. Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog, 5, 2009, e1000361.
    • (2009) PLoS Pathog , vol.5 , pp. e1000361
    • Akhter, A.1
  • 75
    • 84860325913 scopus 로고    scopus 로고
    • Inflammasome-Activated Caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-κB target genes
    • 75 Erener, S., et al. Inflammasome-Activated Caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-κB target genes. Mol. Cell 46 (2012), 200–211.
    • (2012) Mol. Cell , vol.46 , pp. 200-211
    • Erener, S.1
  • 76
    • 0036671894 scopus 로고    scopus 로고
    • The inflammasome
    • 76 Martinon, F., et al. The inflammasome. Mol. Cell 10 (2002), 417–426.
    • (2002) Mol. Cell , vol.10 , pp. 417-426
    • Martinon, F.1
  • 77
    • 84976516826 scopus 로고    scopus 로고
    • Inflammasomes: mechanism of assembly, regulation and signalling
    • 77 Broz, P., Dixit, V.M., Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16 (2016), 407–420.
    • (2016) Nat. Rev. Immunol. , vol.16 , pp. 407-420
    • Broz, P.1    Dixit, V.M.2
  • 79
    • 84925047701 scopus 로고    scopus 로고
    • NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases
    • 79 Abderrazak, A., et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 4 (2015), 296–307.
    • (2015) Redox Biol. , vol.4 , pp. 296-307
    • Abderrazak, A.1
  • 80
    • 84927724336 scopus 로고    scopus 로고
    • Initiation and perpetuation of NLRP3 inflammasome activation and assembly
    • 80 Elliott, E.I., Sutterwala, F.S., Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol. Rev. 265 (2015), 35–52.
    • (2015) Immunol. Rev. , vol.265 , pp. 35-52
    • Elliott, E.I.1    Sutterwala, F.S.2
  • 81
    • 84921498910 scopus 로고    scopus 로고
    • The NAIP/NLRC4 inflammasomes
    • 81 Vance, R.E., The NAIP/NLRC4 inflammasomes. Curr. Opin. Immunol. 32 (2015), 84–89.
    • (2015) Curr. Opin. Immunol. , vol.32 , pp. 84-89
    • Vance, R.E.1
  • 82
    • 63649133278 scopus 로고    scopus 로고
    • AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
    • 82 Hornung, V., et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458 (2009), 514–518.
    • (2009) Nature , vol.458 , pp. 514-518
    • Hornung, V.1
  • 83
    • 77953116282 scopus 로고    scopus 로고
    • Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis
    • 83 Jones, J.W., et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 9771–9776.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 9771-9776
    • Jones, J.W.1
  • 84
    • 84907270863 scopus 로고    scopus 로고
    • Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome
    • 84 Xu, H., et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513 (2014), 237–241.
    • (2014) Nature , vol.513 , pp. 237-241
    • Xu, H.1
  • 85
    • 70450250064 scopus 로고    scopus 로고
    • Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC)
    • 85 de Alba, E., Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). J. Biol. Chem. 284 (2009), 32932–32941.
    • (2009) J. Biol. Chem. , vol.284 , pp. 32932-32941
    • de Alba, E.1
  • 86
    • 84952630550 scopus 로고    scopus 로고
    • Converging roles of caspases in inflammasome activation, cell death and innate immunity
    • 86 Man, S.M., Kanneganti, T.-D., Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 16 (2016), 7–21.
    • (2016) Nat. Rev. Immunol. , vol.16 , pp. 7-21
    • Man, S.M.1    Kanneganti, T.-D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.