메뉴 건너뛰기




Volumn 44, Issue , 2017, Pages 52-60

Host–microbiota interactions: epigenomic regulation

Author keywords

[No Author keywords available]

Indexed keywords

HISTONE DEACETYLASE; SHORT CHAIN FATTY ACID; VOLATILE FATTY ACID;

EID: 85009348377     PISSN: 09527915     EISSN: 18790372     Source Type: Journal    
DOI: 10.1016/j.coi.2016.12.001     Document Type: Review
Times cited : (76)

References (91)
  • 1
    • 84858376593 scopus 로고    scopus 로고
    • The impact of the gut microbiota on human health: an integrative view
    • 1 Clemente, J.C., Ursell, L.K., Parfrey, L.W., Knight, R., The impact of the gut microbiota on human health: an integrative view. Cell 148 (2012), 1258–1270.
    • (2012) Cell , vol.148 , pp. 1258-1270
    • Clemente, J.C.1    Ursell, L.K.2    Parfrey, L.W.3    Knight, R.4
  • 3
    • 84879369738 scopus 로고    scopus 로고
    • Commensal bacteria at the interface of host metabolism and the immune system
    • 3 Brestoff, J.R., Artis, D., Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14 (2013), 676–684.
    • (2013) Nat Immunol , vol.14 , pp. 676-684
    • Brestoff, J.R.1    Artis, D.2
  • 4
    • 84921367265 scopus 로고    scopus 로고
    • Modulation of immune development and function by intestinal microbiota
    • 4 Kabat, A.M., Srinivasan, N., Maloy, K.J., Modulation of immune development and function by intestinal microbiota. Trends Immunol 35 (2014), 507–517.
    • (2014) Trends Immunol , vol.35 , pp. 507-517
    • Kabat, A.M.1    Srinivasan, N.2    Maloy, K.J.3
  • 5
    • 84920469791 scopus 로고    scopus 로고
    • Host-microbe interactions shaping the gastrointestinal environment
    • 5 Kaiko, G.E., Stappenbeck, T.S., Host-microbe interactions shaping the gastrointestinal environment. Trends Immunol 35 (2014), 538–548.
    • (2014) Trends Immunol , vol.35 , pp. 538-548
    • Kaiko, G.E.1    Stappenbeck, T.S.2
  • 6
    • 84866168894 scopus 로고    scopus 로고
    • Functional interactions between the gut microbiota and host metabolism
    • 6 Tremaroli, V., Backhed, F., Functional interactions between the gut microbiota and host metabolism. Nature 489 (2012), 242–249.
    • (2012) Nature , vol.489 , pp. 242-249
    • Tremaroli, V.1    Backhed, F.2
  • 7
    • 84866546211 scopus 로고    scopus 로고
    • Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour
    • 7 Cryan, J.F., Dinan, T.G., Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13 (2012), 701–712.
    • (2012) Nat Rev Neurosci , vol.13 , pp. 701-712
    • Cryan, J.F.1    Dinan, T.G.2
  • 8
    • 0037180433 scopus 로고    scopus 로고
    • Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells
    • 8 Stappenbeck, T.S., Hooper, L.V., Gordon, J.I., Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99 (2002), 15451–15455.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 15451-15455
    • Stappenbeck, T.S.1    Hooper, L.V.2    Gordon, J.I.3
  • 9
    • 84875165863 scopus 로고    scopus 로고
    • Epigenetic programming and reprogramming during development
    • 9 Cantone, I., Fisher, A.G., Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 20 (2013), 282–289.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 282-289
    • Cantone, I.1    Fisher, A.G.2
  • 14
    • 0030798245 scopus 로고    scopus 로고
    • Histone acetylation in chromatin structure and transcription
    • 14 Grunstein, M., Histone acetylation in chromatin structure and transcription. Nature 389 (1997), 349–352.
    • (1997) Nature , vol.389 , pp. 349-352
    • Grunstein, M.1
  • 15
    • 15544384745 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling
    • 15 Smith, C.L., Peterson, C.L., ATP-dependent chromatin remodeling. Curr Top Dev Biol 65 (2005), 115–148.
    • (2005) Curr Top Dev Biol , vol.65 , pp. 115-148
    • Smith, C.L.1    Peterson, C.L.2
  • 16
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • 16 Jenuwein, T., Allis, C.D., Translating the histone code. Science 293 (2001), 1074–1080.
    • (2001) Science , vol.293 , pp. 1074-1080
    • Jenuwein, T.1    Allis, C.D.2
  • 17
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • 17 Strahl, B.D., Allis, C.D., The language of covalent histone modifications. Nature 403 (2000), 41–45.
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 18
    • 0037509909 scopus 로고    scopus 로고
    • Regulation of short-chain fatty acid production
    • 18 Macfarlane, S., Macfarlane, G.T., Regulation of short-chain fatty acid production. Proc Nutr Soc 62 (2003), 67–72.
    • (2003) Proc Nutr Soc , vol.62 , pp. 67-72
    • Macfarlane, S.1    Macfarlane, G.T.2
  • 20
    • 84971201113 scopus 로고    scopus 로고
    • Gut microbiota, metabolites and host immunity
    • 20 Rooks, M.G., Garrett, W.S., Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16 (2016), 341–352.
    • (2016) Nat Rev Immunol , vol.16 , pp. 341-352
    • Rooks, M.G.1    Garrett, W.S.2
  • 22
    • 84908608590 scopus 로고    scopus 로고
    • The gut microbiota, bacterial metabolites and colorectal cancer
    • 22 Louis, P., Hold, G.L., Flint, H.J., The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12 (2014), 661–672.
    • (2014) Nat Rev Microbiol , vol.12 , pp. 661-672
    • Louis, P.1    Hold, G.L.2    Flint, H.J.3
  • 23
    • 33846974390 scopus 로고    scopus 로고
    • Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier
    • 23 Peng, L., He, Z., Chen, W., Holzman, I.R., Lin, J., Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res 61 (2007), 37–41.
    • (2007) Pediatr Res , vol.61 , pp. 37-41
    • Peng, L.1    He, Z.2    Chen, W.3    Holzman, I.R.4    Lin, J.5
  • 24
    • 52949134856 scopus 로고    scopus 로고
    • Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability
    • 24 Suzuki, T., Yoshida, S., Hara, H., Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr 100 (2008), 297–305.
    • (2008) Br J Nutr , vol.100 , pp. 297-305
    • Suzuki, T.1    Yoshida, S.2    Hara, H.3
  • 26
    • 84926367699 scopus 로고    scopus 로고
    • Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome
    • 26 Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun, 6, 2015, 6734.
    • (2015) Nat Commun , vol.6 , pp. 6734
    • Macia, L.1    Tan, J.2    Vieira, A.T.3    Leach, K.4    Stanley, D.5    Luong, S.6    Maruya, M.7    Ian McKenzie, C.8    Hijikata, A.9    Wong, C.10
  • 27
    • 84880620577 scopus 로고    scopus 로고
    • Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice
    • e391-310
    • 27 Kim, M.H., Kang, S.G., Park, J.H., Yanagisawa, M., Kim, C.H., Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145 (2013), 396–406 e391-310.
    • (2013) Gastroenterology , vol.145 , pp. 396-406
    • Kim, M.H.1    Kang, S.G.2    Park, J.H.3    Yanagisawa, M.4    Kim, C.H.5
  • 28
    • 84925081423 scopus 로고    scopus 로고
    • Epigenetic modifications of the immune system in health and disease
    • 28 Obata, Y., Furusawa, Y., Hase, K., Epigenetic modifications of the immune system in health and disease. Immunol Cell Biol 93 (2015), 226–232.
    • (2015) Immunol Cell Biol , vol.93 , pp. 226-232
    • Obata, Y.1    Furusawa, Y.2    Hase, K.3
  • 29
    • 84978115999 scopus 로고    scopus 로고
    • The microbiome and innate immunity
    • 29 Thaiss, C.A., Zmora, N., Levy, M., Elinav, E., The microbiome and innate immunity. Nature 535 (2016), 65–74.
    • (2016) Nature , vol.535 , pp. 65-74
    • Thaiss, C.A.1    Zmora, N.2    Levy, M.3    Elinav, E.4
  • 32
    • 84893859801 scopus 로고    scopus 로고
    • The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
    • This study demonstrated that microbiota-derived butyrate regulated histone acetylation and gene expression in intestinal macrophages in a HDAC dependent manner.
    • 32• Chang, P.V., Hao, L., Offermanns, S., Medzhitov, R., The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111 (2014), 2247–2252 This study demonstrated that microbiota-derived butyrate regulated histone acetylation and gene expression in intestinal macrophages in a HDAC dependent manner.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 2247-2252
    • Chang, P.V.1    Hao, L.2    Offermanns, S.3    Medzhitov, R.4
  • 34
    • 84964577698 scopus 로고    scopus 로고
    • Microbial metabolite butyrate facilitates M2 macrophage polarization and function
    • 34 Ji, J., Shu, D., Zheng, M., Wang, J., Luo, C., Wang, Y., Guo, F., Zou, X., Lv, X., Li, Y., et al. Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci Rep, 6, 2016, 24838.
    • (2016) Sci Rep , vol.6 , pp. 24838
    • Ji, J.1    Shu, D.2    Zheng, M.3    Wang, J.4    Luo, C.5    Wang, Y.6    Guo, F.7    Zou, X.8    Lv, X.9    Li, Y.10
  • 36
    • 84892449521 scopus 로고    scopus 로고
    • Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
    • 36 Singh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H., Thangaraju, M., Prasad, P.D., Manicassamy, S., Munn, D.H., et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40 (2014), 128–139.
    • (2014) Immunity , vol.40 , pp. 128-139
    • Singh, N.1    Gurav, A.2    Sivaprakasam, S.3    Brady, E.4    Padia, R.5    Shi, H.6    Thangaraju, M.7    Prasad, P.D.8    Manicassamy, S.9    Munn, D.H.10
  • 37
  • 38
    • 85009362921 scopus 로고    scopus 로고
    • Role of serum amyloid A, GM-CSF and bone marrow granulocyte-monocyte precursor expansion in segmented filamentous bacteria-mediated protection from Entamoeba histolytica
    • 38 Burgess, S.L., Saleh, M., Cowardin, C.A., Buonomo, E., Noor, Z., Watanabe, K., Abhyankar, M., Lajoie, S., Wills-Karp, M., Petri, W.A. Jr., Role of serum amyloid A, GM-CSF and bone marrow granulocyte-monocyte precursor expansion in segmented filamentous bacteria-mediated protection from Entamoeba histolytica. Infect Immun, 2016.
    • (2016) Infect Immun
    • Burgess, S.L.1    Saleh, M.2    Cowardin, C.A.3    Buonomo, E.4    Noor, Z.5    Watanabe, K.6    Abhyankar, M.7    Lajoie, S.8    Wills-Karp, M.9    Petri, W.A.10
  • 40
    • 57849117363 scopus 로고    scopus 로고
    • RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
    • 40 Sanos, S.L., Bui, V.L., Mortha, A., Oberle, K., Heners, C., Johner, C., Diefenbach, A., RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10 (2009), 83–91.
    • (2009) Nat Immunol , vol.10 , pp. 83-91
    • Sanos, S.L.1    Bui, V.L.2    Mortha, A.3    Oberle, K.4    Heners, C.5    Johner, C.6    Diefenbach, A.7
  • 42
    • 79952986650 scopus 로고    scopus 로고
    • RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
    • 42 Sawa, S., Lochner, M., Satoh-Takayama, N., Dulauroy, S., Berard, M., Kleinschek, M., Cua, D., Di Santo, J.P., Eberl, G., RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 12 (2011), 320–326.
    • (2011) Nat Immunol , vol.12 , pp. 320-326
    • Sawa, S.1    Lochner, M.2    Satoh-Takayama, N.3    Dulauroy, S.4    Berard, M.5    Kleinschek, M.6    Cua, D.7    Di Santo, J.P.8    Eberl, G.9
  • 44
    • 84929996266 scopus 로고    scopus 로고
    • Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology
    • 44 Eberl, G., Colonna, M., Di Santo, J.P., McKenzie, A.N., Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science, 348, 2015, aaa6566.
    • (2015) Science , vol.348 , pp. aaa6566
    • Eberl, G.1    Colonna, M.2    Di Santo, J.P.3    McKenzie, A.N.4
  • 45
    • 84922607138 scopus 로고    scopus 로고
    • The biology of innate lymphoid cells
    • 45 Artis, D., Spits, H., The biology of innate lymphoid cells. Nature 517 (2015), 293–301.
    • (2015) Nature , vol.517 , pp. 293-301
    • Artis, D.1    Spits, H.2
  • 46
  • 47
    • 84976314221 scopus 로고    scopus 로고
    • Development of innate lymphoid cells
    • 47 Zook, E.C., Kee, B.L., Development of innate lymphoid cells. Nat Immunol 17 (2016), 775–782.
    • (2016) Nat Immunol , vol.17 , pp. 775-782
    • Zook, E.C.1    Kee, B.L.2
  • 55
    • 84983780960 scopus 로고    scopus 로고
    • The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome
    • e1213 This group of studies combined genome-wide and single-cell transcriptional and epigenomic approaches to demonstrate the influence of the microbiota on the epigenome of ILCs in the mouse and human intestine.
    • 55•• Gury-BenAri, M., Thaiss, C.A., Serafini, N., Winter, D.R., Giladi, A., Lara-Astiaso, D., Levy, M., Salame, T.M., Weiner, A., David, E., et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166 (2016), 1231–1246 e1213 This group of studies combined genome-wide and single-cell transcriptional and epigenomic approaches to demonstrate the influence of the microbiota on the epigenome of ILCs in the mouse and human intestine.
    • (2016) Cell , vol.166 , pp. 1231-1246
    • Gury-BenAri, M.1    Thaiss, C.A.2    Serafini, N.3    Winter, D.R.4    Giladi, A.5    Lara-Astiaso, D.6    Levy, M.7    Salame, T.M.8    Weiner, A.9    David, E.10
  • 56
    • 84908313599 scopus 로고    scopus 로고
    • Commensal microbial regulation of natural killer T cells at the frontiers of the mucosal immune system
    • 56 Zeissig, S., Blumberg, R.S., Commensal microbial regulation of natural killer T cells at the frontiers of the mucosal immune system. FEBS Lett 588 (2014), 4188–4194.
    • (2014) FEBS Lett , vol.588 , pp. 4188-4194
    • Zeissig, S.1    Blumberg, R.S.2
  • 58
    • 84964403670 scopus 로고    scopus 로고
    • Development and maintenance of intestinal regulatory T cells
    • 58 Tanoue, T., Atarashi, K., Honda, K., Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol 16 (2016), 295–309.
    • (2016) Nat Rev Immunol , vol.16 , pp. 295-309
    • Tanoue, T.1    Atarashi, K.2    Honda, K.3
  • 60
    • 84922163095 scopus 로고    scopus 로고
    • Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway
    • 60 Park, J., Kim, M., Kang, S.G., Jannasch, A.H., Cooper, B., Patterson, J., Kim, C.H., Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 8 (2015), 80–93.
    • (2015) Mucosal Immunol , vol.8 , pp. 80-93
    • Park, J.1    Kim, M.2    Kang, S.G.3    Jannasch, A.H.4    Cooper, B.5    Patterson, J.6    Kim, C.H.7
  • 62
    • 84862881397 scopus 로고    scopus 로고
    • Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms
    • 62 Beier, U.H., Wang, L., Han, R., Akimova, T., Liu, Y., Hancock, W.W., Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci Signal, 5, 2012, ra45.
    • (2012) Sci Signal , vol.5 , pp. ra45
    • Beier, U.H.1    Wang, L.2    Han, R.3    Akimova, T.4    Liu, Y.5    Hancock, W.W.6
  • 64
    • 84901065053 scopus 로고    scopus 로고
    • The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells
    • The authors linked the microbiota with expression of the DNA methylation adaptor protein UHRF1 and DNA methylation in colonic Treg cell homeostasis.
    • 64•• Obata, Y., Furusawa, Y., Endo, T.A., Sharif, J., Takahashi, D., Atarashi, K., Nakayama, M., Onawa, S., Fujimura, Y., Takahashi, M., et al. The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nat Immunol 15 (2014), 571–579 The authors linked the microbiota with expression of the DNA methylation adaptor protein UHRF1 and DNA methylation in colonic Treg cell homeostasis.
    • (2014) Nat Immunol , vol.15 , pp. 571-579
    • Obata, Y.1    Furusawa, Y.2    Endo, T.A.3    Sharif, J.4    Takahashi, D.5    Atarashi, K.6    Nakayama, M.7    Onawa, S.8    Fujimura, Y.9    Takahashi, M.10
  • 65
    • 84862862332 scopus 로고    scopus 로고
    • Epithelial antimicrobial defence of the skin and intestine
    • 65 Gallo, R.L., Hooper, L.V., Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12 (2012), 503–516.
    • (2012) Nat Rev Immunol , vol.12 , pp. 503-516
    • Gallo, R.L.1    Hooper, L.V.2
  • 66
    • 84896851032 scopus 로고    scopus 로고
    • Intestinal epithelial cells: regulators of barrier function and immune homeostasis
    • 66 Peterson, L.W., Artis, D., Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14 (2014), 141–153.
    • (2014) Nat Rev Immunol , vol.14 , pp. 141-153
    • Peterson, L.W.1    Artis, D.2
  • 67
    • 0035793372 scopus 로고    scopus 로고
    • Molecular analysis of commensal host-microbial relationships in the intestine
    • 67 Hooper, L.V., Wong, M.H., Thelin, A., Hansson, L., Falk, P.G., Gordon, J.I., Molecular analysis of commensal host-microbial relationships in the intestine. Science 291 (2001), 881–884.
    • (2001) Science , vol.291 , pp. 881-884
    • Hooper, L.V.1    Wong, M.H.2    Thelin, A.3    Hansson, L.4    Falk, P.G.5    Gordon, J.I.6
  • 68
    • 84863718303 scopus 로고    scopus 로고
    • Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88
    • 68 Larsson, E., Tremaroli, V., Lee, Y.S., Koren, O., Nookaew, I., Fricker, A., Nielsen, J., Ley, R.E., Backhed, F., Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 61 (2012), 1124–1131.
    • (2012) Gut , vol.61 , pp. 1124-1131
    • Larsson, E.1    Tremaroli, V.2    Lee, Y.S.3    Koren, O.4    Nookaew, I.5    Fricker, A.6    Nielsen, J.7    Ley, R.E.8    Backhed, F.9
  • 69
    • 84927649365 scopus 로고    scopus 로고
    • Autophagy, viruses, and intestinal immunity
    • 69 Kernbauer, E., Cadwell, K., Autophagy, viruses, and intestinal immunity. Curr Opin Gastroenterol 30 (2014), 539–546.
    • (2014) Curr Opin Gastroenterol , vol.30 , pp. 539-546
    • Kernbauer, E.1    Cadwell, K.2
  • 71
    • 84939163442 scopus 로고    scopus 로고
    • Site-specific programming of the host epithelial transcriptome by the gut microbiota
    • 71 Sommer, F., Nookaew, I., Sommer, N., Fogelstrand, P., Backhed, F., Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biol, 16, 2015, 62.
    • (2015) Genome Biol , vol.16 , pp. 62
    • Sommer, F.1    Nookaew, I.2    Sommer, N.3    Fogelstrand, P.4    Backhed, F.5
  • 72
    • 80053922802 scopus 로고    scopus 로고
    • Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells
    • 72 Takahashi, K., Sugi, Y., Nakano, K., Tsuda, M., Kurihara, K., Hosono, A., Kaminogawa, S., Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. J Biol Chem 286 (2011), 35755–35762.
    • (2011) J Biol Chem , vol.286 , pp. 35755-35762
    • Takahashi, K.1    Sugi, Y.2    Nakano, K.3    Tsuda, M.4    Kurihara, K.5    Hosono, A.6    Kaminogawa, S.7
  • 73
    • 84907204435 scopus 로고    scopus 로고
    • Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape
    • This study suggested that the microbiota does not globally alter chromatin accessibility but instead differentially regulates transcription factors expression and recruitment in IECs.
    • 73• Camp, J.G., Frank, C.L., Lickwar, C.R., Guturu, H., Rube, T., Wenger, A.M., Chen, J., Bejerano, G., Crawford, G.E., Rawls, J.F., Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape. Genome Res 24 (2014), 1504–1516 This study suggested that the microbiota does not globally alter chromatin accessibility but instead differentially regulates transcription factors expression and recruitment in IECs.
    • (2014) Genome Res , vol.24 , pp. 1504-1516
    • Camp, J.G.1    Frank, C.L.2    Lickwar, C.R.3    Guturu, H.4    Rube, T.5    Wenger, A.M.6    Chen, J.7    Bejerano, G.8    Crawford, G.E.9    Rawls, J.F.10
  • 75
    • 84944151101 scopus 로고    scopus 로고
    • Epigenetic regulation of the intestinal epithelium
    • 75 Elliott, E.N., Kaestner, K.H., Epigenetic regulation of the intestinal epithelium. Cell Mol Life Sci 72 (2015), 4139–4156.
    • (2015) Cell Mol Life Sci , vol.72 , pp. 4139-4156
    • Elliott, E.N.1    Kaestner, K.H.2
  • 76
    • 84942615814 scopus 로고    scopus 로고
    • Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome
    • The authors demonstrated a microbiota-dependent DNA methylation patterning in intestinal epithelial cells at genes associated with intestinal development.
    • 76• Yu, D.H., Gadkari, M., Zhou, Q., Yu, S., Gao, N., Guan, Y., Schady, D., Roshan, T.N., Chen, M.H., Laritsky, E., et al. Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome. Genome Biol, 16, 2015, 211 The authors demonstrated a microbiota-dependent DNA methylation patterning in intestinal epithelial cells at genes associated with intestinal development.
    • (2015) Genome Biol , vol.16 , pp. 211
    • Yu, D.H.1    Gadkari, M.2    Zhou, Q.3    Yu, S.4    Gao, N.5    Guan, Y.6    Schady, D.7    Roshan, T.N.8    Chen, M.H.9    Laritsky, E.10
  • 77
    • 84931056085 scopus 로고    scopus 로고
    • Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium
    • 77 Elliott, E.N., Sheaffer, K.L., Schug, J., Stappenbeck, T.S., Kaestner, K.H., Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium. Development 142 (2015), 2163–2172.
    • (2015) Development , vol.142 , pp. 2163-2172
    • Elliott, E.N.1    Sheaffer, K.L.2    Schug, J.3    Stappenbeck, T.S.4    Kaestner, K.H.5
  • 78
    • 79955579989 scopus 로고    scopus 로고
    • The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon
    • 78 Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O'Connell, T.M., Bunger, M.K., Bultman, S.J., The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13 (2011), 517–526.
    • (2011) Cell Metab , vol.13 , pp. 517-526
    • Donohoe, D.R.1    Garge, N.2    Zhang, X.3    Sun, W.4    O'Connell, T.M.5    Bunger, M.K.6    Bultman, S.J.7
  • 79
    • 84973666361 scopus 로고    scopus 로고
    • The colonic crypt protects stem cells from microbiota-derived metabolites
    • The authors identified that colonic crypt structure protects the intestinal stem cells from butyrate-induced dysregulation of intestinal stem cell function and epithelial development.
    • 79• Kaiko, G.E., Ryu, S.H., Koues, O.I., Collins, P.L., Solnica-Krezel, L., Pearce, E.J., Pearce, E.L., Oltz, E.M., Stappenbeck, T.S., The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165 (2016), 1708–1720 The authors identified that colonic crypt structure protects the intestinal stem cells from butyrate-induced dysregulation of intestinal stem cell function and epithelial development.
    • (2016) Cell , vol.165 , pp. 1708-1720
    • Kaiko, G.E.1    Ryu, S.H.2    Koues, O.I.3    Collins, P.L.4    Solnica-Krezel, L.5    Pearce, E.J.6    Pearce, E.L.7    Oltz, E.M.8    Stappenbeck, T.S.9
  • 81
    • 84900564655 scopus 로고    scopus 로고
    • The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis
    • 81 Turgeon, N., Gagne, J.M., Blais, M., Gendron, F.P., Boudreau, F., Asselin, C., The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis. Am J Physiol Gastrointest Liver Physiol 306 (2014), G594–G605.
    • (2014) Am J Physiol Gastrointest Liver Physiol , vol.306 , pp. G594-G605
    • Turgeon, N.1    Gagne, J.M.2    Blais, M.3    Gendron, F.P.4    Boudreau, F.5    Asselin, C.6
  • 83
    • 84944929580 scopus 로고    scopus 로고
    • Distinct roles for intestinal epithelial cell-specific Hdac1 and Hdac2 in the regulation of murine intestinal homeostasis
    • 83 Gonneaud, A., Turgeon, N., Boudreau, F., Perreault, N., Rivard, N., Asselin, C., Distinct roles for intestinal epithelial cell-specific Hdac1 and Hdac2 in the regulation of murine intestinal homeostasis. J Cell Physiol 231 (2016), 436–448.
    • (2016) J Cell Physiol , vol.231 , pp. 436-448
    • Gonneaud, A.1    Turgeon, N.2    Boudreau, F.3    Perreault, N.4    Rivard, N.5    Asselin, C.6
  • 84
    • 84926315282 scopus 로고    scopus 로고
    • The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems
    • 84 Carabotti, M., Scirocco, A., Maselli, M.A., Severi, C., The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28 (2015), 203–209.
    • (2015) Ann Gastroenterol , vol.28 , pp. 203-209
    • Carabotti, M.1    Scirocco, A.2    Maselli, M.A.3    Severi, C.4
  • 85
    • 84872686051 scopus 로고    scopus 로고
    • The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse
    • 183-e188
    • 85 McVey Neufeld, K.A., Mao, Y.K., Bienenstock, J., Foster, J.A., Kunze, W.A., The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil, 25, 2013 183-e188.
    • (2013) Neurogastroenterol Motil , vol.25
    • McVey Neufeld, K.A.1    Mao, Y.K.2    Bienenstock, J.3    Foster, J.A.4    Kunze, W.A.5
  • 86
    • 84866677472 scopus 로고    scopus 로고
    • Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling
    • e1004
    • 86 Anitha, M., Vijay-Kumar, M., Sitaraman, S.V., Gewirtz, A.T., Srinivasan, S., Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143 (2012), 1006–1016 e1004.
    • (2012) Gastroenterology , vol.143 , pp. 1006-1016
    • Anitha, M.1    Vijay-Kumar, M.2    Sitaraman, S.V.3    Gewirtz, A.T.4    Srinivasan, S.5
  • 89
    • 84862578145 scopus 로고    scopus 로고
    • Butyrate enemas enhance both cholinergic and nitrergic phenotype of myenteric neurons and neuromuscular transmission in newborn rat colon
    • 89 Suply, E., de Vries, P., Soret, R., Cossais, F., Neunlist, M., Butyrate enemas enhance both cholinergic and nitrergic phenotype of myenteric neurons and neuromuscular transmission in newborn rat colon. Am J Physiol Gastrointest Liver Physiol 302 (2012), G1373–G1380.
    • (2012) Am J Physiol Gastrointest Liver Physiol , vol.302 , pp. G1373-G1380
    • Suply, E.1    de Vries, P.2    Soret, R.3    Cossais, F.4    Neunlist, M.5
  • 91
    • 84933043202 scopus 로고    scopus 로고
    • Host microbiota constantly control maturation and function of microglia in the CNS
    • This study identified a novel role for the microbiota and SCFAs in mediating microglia development and homeostasis in the CNS.
    • 91•• Erny, D., Hrabe de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18 (2015), 965–977 This study identified a novel role for the microbiota and SCFAs in mediating microglia development and homeostasis in the CNS.
    • (2015) Nat Neurosci , vol.18 , pp. 965-977
    • Erny, D.1    Hrabe de Angelis, A.L.2    Jaitin, D.3    Wieghofer, P.4    Staszewski, O.5    David, E.6    Keren-Shaul, H.7    Mahlakoiv, T.8    Jakobshagen, K.9    Buch, T.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.