메뉴 건너뛰기




Volumn 11, Issue 2, 2017, Pages 157-166

New insights into the anti-diabetic actions of metformin: from the liver to the gut

Author keywords

bile salt; glucose absorption; gut microbiota; hepatic glucose production; incretin hormones; Metformin

Indexed keywords

ADENYLATE KINASE; CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN; FARNESOID X RECEPTOR; GLUCAGON LIKE PEPTIDE 1; GLUCOSE TRANSPORTER 2; GLUCOSE TRANSPORTER 5; INCRETIN; METFORMIN; MULTIDRUG AND TOXIN EXTRUSION PROTEIN 1; MULTIDRUG AND TOXIN EXTRUSION PROTEIN 2; ORGANIC CATION TRANSPORTER 3; PEPTIDE YY; SODIUM GLUCOSE COTRANSPORTER 1; ANTIDIABETIC AGENT; BIOLOGICAL MARKER; GLUCOSE BLOOD LEVEL;

EID: 85008958392     PISSN: 17474124     EISSN: 17474132     Source Type: Journal    
DOI: 10.1080/17474124.2017.1273769     Document Type: Review
Times cited : (47)

References (86)
  • 1
    • 85182593325 scopus 로고
    • Die blutzuckersenkende Wirkung der Biguanide
    • Slotta KH, Tschesche E. Über Biguanide TR, II. Die blutzuckersenkende Wirkung der Biguanide. Ber Dtsch Chem Ges. 1929;62:1398–1405.
    • (1929) Ber Dtsch Chem Ges , vol.62 , pp. 1398-1405
    • Slotta, K.H.1    Über Biguanide, T.R.2
  • 2
    • 84920025605 scopus 로고    scopus 로고
    • Metformin in patients with type 2 diabetes and kidney disease: a systematic review
    • Inzucchi SE, Lipska KJ, Mayo H, et al. Metformin in patients with type 2 diabetes and kidney disease:a systematic review. JAMA. 2014;312(24):2668–2675.
    • (2014) JAMA , vol.312 , Issue.24 , pp. 2668-2675
    • Inzucchi, S.E.1    Lipska, K.J.2    Mayo, H.3
  • 3
    • 0032511583 scopus 로고    scopus 로고
    • Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) group
    • Group U. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) group. Lancet. 1998;352(9131):837–853.
    • (1998) Lancet , vol.352 , Issue.9131 , pp. 837-853
  • 4
    • 54949090768 scopus 로고    scopus 로고
    • Cardiovascular outcomes in trials of oral diabetes medications: a systematic review
    • Selvin E, Bolen S, Yeh HC, et al. Cardiovascular outcomes in trials of oral diabetes medications:a systematic review. Arch Intern Med. 2008;168(19):2070–2080.
    • (2008) Arch Intern Med , vol.168 , Issue.19 , pp. 2070-2080
    • Selvin, E.1    Bolen, S.2    Yeh, H.C.3
  • 6
    • 0029133235 scopus 로고
    • Metabolic effects of metformin in non-insulin-dependent diabetes mellitus
    • Stumvoll M, Nurjhan N, Perriello G, et al. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(9):550–554.
    • (1995) N Engl J Med , vol.333 , Issue.9 , pp. 550-554
    • Stumvoll, M.1    Nurjhan, N.2    Perriello, G.3
  • 7
    • 0019467428 scopus 로고
    • Metformin kinetics in healthy subjects and in patients with diabetes mellitus
    • Tucker GT, Casey C, Phillips PJ, et al. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235–246.
    • (1981) Br J Clin Pharmacol , vol.12 , Issue.2 , pp. 235-246
    • Tucker, G.T.1    Casey, C.2    Phillips, P.J.3
  • 8
    • 78751500357 scopus 로고    scopus 로고
    • Clinical pharmacokinetics of metformin
    • Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98.
    • (2011) Clin Pharmacokinet , vol.50 , Issue.2 , pp. 81-98
    • Graham, G.G.1    Punt, J.2    Arora, M.3
  • 9
    • 84922844480 scopus 로고    scopus 로고
    • Metformin action: concentrations matter
    • He L, Wondisford FE. Metformin action:concentrations matter. Cell Metab. 2015;21(2):159–162.
    • (2015) Cell Metab , vol.21 , Issue.2 , pp. 159-162
    • He, L.1    Wondisford, F.E.2
  • 10
    • 84962094356 scopus 로고    scopus 로고
    • The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies
    • Buse JB, DeFronzo RA, Rosenstock J, et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation:results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care. 2016;39(2):198–205.•• This study illustrated the major contribution of the gastrointestinal actions of metformin to its glucose-lowering effect in patients with type 2 diabetes.
    • (2016) Diabetes Care , vol.39 , Issue.2 , pp. 198-205
    • Buse, J.B.1    DeFronzo, R.A.2    Rosenstock, J.3
  • 11
    • 0028158709 scopus 로고
    • Accumulation of metformin by tissues of the normal and diabetic mouse
    • Wilcock C, Bailey CJ. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica. 1994;24(1):49–57.
    • (1994) Xenobiotica , vol.24 , Issue.1 , pp. 49-57
    • Wilcock, C.1    Bailey, C.J.2
  • 13
    • 84955203998 scopus 로고    scopus 로고
    • Inhibition of the MATE transporter by pyrimethamine increases the plasma concentration of metformin but does not increase anti-hyperglycaemic activity in humans
    • Oh J, Chung H, Park SI, et al. Inhibition of the MATE transporter by pyrimethamine increases the plasma concentration of metformin but does not increase anti-hyperglycaemic activity in humans. Diabetes Obes Metab. 2016;18(1):104–108.
    • (2016) Diabetes Obes Metab , vol.18 , Issue.1 , pp. 104-108
    • Oh, J.1    Chung, H.2    Park, S.I.3
  • 14
    • 84961122890 scopus 로고    scopus 로고
    • The effect of nizatidine, a MATE2K selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin in healthy volunteers
    • Morrissey KM, Stocker SL, Chen EC, et al. The effect of nizatidine, a MATE2K selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin in healthy volunteers. Clin Pharmacokinet. 2016;55(4):495–506.
    • (2016) Clin Pharmacokinet , vol.55 , Issue.4 , pp. 495-506
    • Morrissey, K.M.1    Stocker, S.L.2    Chen, E.C.3
  • 15
    • 0034659785 scopus 로고    scopus 로고
    • Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
    • Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(Pt 3):607–614.
    • (2000) Biochem J , vol.348 , pp. 607-614
    • Owen, M.R.1    Doran, E.2    Halestrap, A.P.3
  • 16
    • 0034614420 scopus 로고    scopus 로고
    • Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I
    • El-Mir MY, Nogueira V, Fontaine E, et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275(1):223–228.
    • (2000) J Biol Chem , vol.275 , Issue.1 , pp. 223-228
    • El-Mir, M.Y.1    Nogueira, V.2    Fontaine, E.3
  • 17
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–1174.
    • (2001) J Clin Invest , vol.108 , Issue.8 , pp. 1167-1174
    • Zhou, G.1    Myers, R.2    Li, Y.3
  • 18
    • 28844433635 scopus 로고    scopus 로고
    • The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
    • Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310(5754):1642–1646.
    • (2005) Science , vol.310 , Issue.5754 , pp. 1642-1646
    • Shaw, R.J.1    Lamia, K.A.2    Vasquez, D.3
  • 19
    • 77949493599 scopus 로고    scopus 로고
    • Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5
    • Caton PW, Nayuni NK, Kieswich J, et al. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol. 2010;205(1):97–106.
    • (2010) J Endocrinol , vol.205 , Issue.1 , pp. 97-106
    • Caton, P.W.1    Nayuni, N.K.2    Kieswich, J.3
  • 20
    • 65549136655 scopus 로고    scopus 로고
    • Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
    • He L, Sabet A, Djedjos S, et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell. 2009;137(4):635–646.
    • (2009) Cell , vol.137 , Issue.4 , pp. 635-646
    • He, L.1    Sabet, A.2    Djedjos, S.3
  • 21
    • 77954933558 scopus 로고    scopus 로고
    • Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
    • Foretz M, Hebrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120(7):2355–2369.
    • (2010) J Clin Invest , vol.120 , Issue.7 , pp. 2355-2369
    • Foretz, M.1    Hebrard, S.2    Leclerc, J.3
  • 22
    • 84889887123 scopus 로고    scopus 로고
    • Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin
    • Fullerton MD, Galic S, Marcinko K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013;19(12):1649–1654.
    • (2013) Nat Med , vol.19 , Issue.12 , pp. 1649-1654
    • Fullerton, M.D.1    Galic, S.2    Marcinko, K.3
  • 23
    • 84976330090 scopus 로고    scopus 로고
    • Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue
    • Zhao W, Li A, Feng X, et al. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue. Cell Signal. 2016;28(9):1401–1411.
    • (2016) Cell Signal , vol.28 , Issue.9 , pp. 1401-1411
    • Zhao, W.1    Li, A.2    Feng, X.3
  • 24
    • 84873707522 scopus 로고    scopus 로고
    • Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP
    • Miller RA, Chu Q, Xie J, et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013;494(7436):256–260.• This study established a novel link between metformin and hepatic glucagon signaling in mice.
    • (2013) Nature , vol.494 , Issue.7436 , pp. 256-260
    • Miller, R.A.1    Chu, Q.2    Xie, J.3
  • 25
    • 84905019254 scopus 로고    scopus 로고
    • Effects of sitagliptin on glycemia, incretin hormones, and antropyloroduodenal motility in response to intraduodenal glucose infusion in healthy lean and obese humans and patients with type 2 diabetes treated with or without metformin
    • Wu T, Ma J, Bound MJ, et al. Effects of sitagliptin on glycemia, incretin hormones, and antropyloroduodenal motility in response to intraduodenal glucose infusion in healthy lean and obese humans and patients with type 2 diabetes treated with or without metformin. Diabetes. 2014;63(8):2776–2787.
    • (2014) Diabetes , vol.63 , Issue.8 , pp. 2776-2787
    • Wu, T.1    Ma, J.2    Bound, M.J.3
  • 26
    • 73349089955 scopus 로고    scopus 로고
    • Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia
    • Gu W, Yan H, Winters KA, et al. Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia. J Pharmacol Exp Ther. 2009;331(3):871–881.
    • (2009) J Pharmacol Exp Ther , vol.331 , Issue.3 , pp. 871-881
    • Gu, W.1    Yan, H.2    Winters, K.A.3
  • 27
    • 84903524608 scopus 로고    scopus 로고
    • Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
    • Madiraju AK, Erion DM, Rahimi Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510(7506):542–546.• This study discovered mitochondrial glycerophosphate dehydrogenase as a new therapeutic target of metformin in rats.
    • (2014) Nature , vol.510 , Issue.7506 , pp. 542-546
    • Madiraju, A.K.1    Erion, D.M.2    Rahimi, Y.3
  • 28
    • 0026541437 scopus 로고
    • The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes
    • Sum CF, Webster JM, Johnson AB, et al. The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes. Diabet Med. 1992;9(1):61–65.
    • (1992) Diabet Med , vol.9 , Issue.1 , pp. 61-65
    • Sum, C.F.1    Webster, J.M.2    Johnson, A.B.3
  • 29
    • 84905404389 scopus 로고    scopus 로고
    • Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK)
    • Cao J, Meng S, Chang E, et al. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J Biol Chem. 2014;289(30):20435–20446.
    • (2014) J Biol Chem , vol.289 , Issue.30 , pp. 20435-20446
    • Cao, J.1    Meng, S.2    Chang, E.3
  • 30
    • 84992363334 scopus 로고    scopus 로고
    • Metformin activates AMPK through the lysosomal pathway
    • Zhang CS, Li M, Ma T, et al. Metformin activates AMPK through the lysosomal pathway. Cell Metab. 2016;24(4):521–522.
    • (2016) Cell Metab , vol.24 , Issue.4 , pp. 521-522
    • Zhang, C.S.1    Li, M.2    Ma, T.3
  • 31
    • 84963656397 scopus 로고    scopus 로고
    • Are metformin doses used in murine cancer models clinically relevant?
    • Chandel NS, Avizonis D, Reczek CR, et al. Are metformin doses used in murine cancer models clinically relevant? Cell Metab. 2016;23(4):569–570.
    • (2016) Cell Metab , vol.23 , Issue.4 , pp. 569-570
    • Chandel, N.S.1    Avizonis, D.2    Reczek, C.R.3
  • 32
    • 34248156160 scopus 로고    scopus 로고
    • Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action
    • Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007;117(5):1422–1431.
    • (2007) J Clin Invest , vol.117 , Issue.5 , pp. 1422-1431
    • Shu, Y.1    Sheardown, S.A.2    Brown, C.3
  • 33
    • 66649121405 scopus 로고    scopus 로고
    • Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study
    • Zhou K, Donnelly LA, Kimber CH, et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin:a GoDARTS study. Diabetes. 2009;58(6):1434–1439.
    • (2009) Diabetes , vol.58 , Issue.6 , pp. 1434-1439
    • Zhou, K.1    Donnelly, L.A.2    Kimber, C.H.3
  • 34
    • 0036323871 scopus 로고    scopus 로고
    • Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect
    • Stepensky D, Friedman M, Raz I, et al. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab Dispos. 2002;30(8):861–868.
    • (2002) Drug Metab Dispos , vol.30 , Issue.8 , pp. 861-868
    • Stepensky, D.1    Friedman, M.2    Raz, I.3
  • 35
    • 0033952266 scopus 로고    scopus 로고
    • Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine
    • Ikeda T, Iwata K, Murakami H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem Pharmacol. 2000;59(7):887–890.
    • (2000) Biochem Pharmacol , vol.59 , Issue.7 , pp. 887-890
    • Ikeda, T.1    Iwata, K.2    Murakami, H.3
  • 36
    • 0026011343 scopus 로고
    • Reconsideration of inhibitory effect of metformin on intestinal glucose absorption
    • Wilcock C, Bailey CJ. Reconsideration of inhibitory effect of metformin on intestinal glucose absorption. J Pharm Pharmacol. 1991;43(2):120–121.
    • (1991) J Pharm Pharmacol , vol.43 , Issue.2 , pp. 120-121
    • Wilcock, C.1    Bailey, C.J.2
  • 37
    • 77957035562 scopus 로고    scopus 로고
    • Metformin-induced regulation of the intestinal D-glucose transporters
    • Sakar Y, Meddah B, Faouzi MA, et al. Metformin-induced regulation of the intestinal D-glucose transporters. J Physiol Pharmacol. 2010;61(3):301–307.
    • (2010) J Physiol Pharmacol , vol.61 , Issue.3 , pp. 301-307
    • Sakar, Y.1    Meddah, B.2    Faouzi, M.A.3
  • 38
    • 0029665092 scopus 로고    scopus 로고
    • Effect of metformin on SGLT1, GLUT2, and GLUT5 hexose transporter gene expression in small intestine from rats
    • Lenzen S, Lortz S, Tiedge M. Effect of metformin on SGLT1, GLUT2, and GLUT5 hexose transporter gene expression in small intestine from rats. Biochem Pharmacol. 1996;51(7):893–896.
    • (1996) Biochem Pharmacol , vol.51 , Issue.7 , pp. 893-896
    • Lenzen, S.1    Lortz, S.2    Tiedge, M.3
  • 39
    • 85005926416 scopus 로고    scopus 로고
    • Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes
    • [Epub ahead of print]
    • Wu T, Xie C, Wu H, et al. Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes. Diabetes Obes Metab. 2016. doi:10.1111/dom.12812. [Epub ahead of print].•• This study reported an inhibitory effect of metformin on glucose absorption in patients with type 2 diabetes.
    • (2016) Diabetes Obes Metab
    • Wu, T.1    Xie, C.2    Wu, H.3
  • 40
    • 36849091871 scopus 로고    scopus 로고
    • High and typical 18F-FDG bowel uptake in patients treated with metformin
    • Gontier E, Fourme E, Wartski M, et al. High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur J Nucl Med Mol Imaging. 2008;35(1):95–99.
    • (2008) Eur J Nucl Med Mol Imaging , vol.35 , Issue.1 , pp. 95-99
    • Gontier, E.1    Fourme, E.2    Wartski, M.3
  • 41
    • 0025289594 scopus 로고
    • Sites of metformin-stimulated glucose metabolism
    • Wilcock C, Bailey CJ. Sites of metformin-stimulated glucose metabolism. Biochem Pharmacol. 1990;39(11):1831–1834.
    • (1990) Biochem Pharmacol , vol.39 , Issue.11 , pp. 1831-1834
    • Wilcock, C.1    Bailey, C.J.2
  • 42
    • 0026606805 scopus 로고
    • Effect of metformin on glucose metabolism in the splanchnic bed
    • Bailey CJ, Wilcock C, Day C. Effect of metformin on glucose metabolism in the splanchnic bed. Br J Pharmacol. 1992;105(4):1009–1013.
    • (1992) Br J Pharmacol , vol.105 , Issue.4 , pp. 1009-1013
    • Bailey, C.J.1    Wilcock, C.2    Day, C.3
  • 44
    • 84907970634 scopus 로고    scopus 로고
    • Mechanism of increase in plasma intact GLP-1 by metformin in type 2 diabetes: stimulation of GLP-1 secretion or reduction in plasma DPP-4 activity?
    • Wu T, Thazhath SS, Bound MJ, et al. Mechanism of increase in plasma intact GLP-1 by metformin in type 2 diabetes:stimulation of GLP-1 secretion or reduction in plasma DPP-4 activity? Diabetes Res Clin Pract. 2014;106(1):e3–e6.
    • (2014) Diabetes Res Clin Pract , vol.106 , Issue.1 , pp. e3-e6
    • Wu, T.1    Thazhath, S.S.2    Bound, M.J.3
  • 45
    • 82355165097 scopus 로고    scopus 로고
    • Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell
    • Mulherin AJ, Oh AH, Kim H, et al. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology. 2011;152(12):4610–4619.
    • (2011) Endocrinology , vol.152 , Issue.12 , pp. 4610-4619
    • Mulherin, A.J.1    Oh, A.H.2    Kim, H.3
  • 46
    • 78649908592 scopus 로고    scopus 로고
    • Addition of metformin to exogenous glucagon-like peptide-1 results in increased serum glucagon-like peptide-1 concentrations and greater glucose lowering in type 2 diabetes mellitus
    • Cuthbertson J, Patterson S, O’Harte FP, et al. Addition of metformin to exogenous glucagon-like peptide-1 results in increased serum glucagon-like peptide-1 concentrations and greater glucose lowering in type 2 diabetes mellitus. Metabolism. 2011;60(1):52–56.
    • (2011) Metabolism , vol.60 , Issue.1 , pp. 52-56
    • Cuthbertson, J.1    Patterson, S.2    O’Harte, F.P.3
  • 47
    • 84978872468 scopus 로고    scopus 로고
    • Involvement of glucagon-like peptide-1 in the glucose-lowering effect of metformin
    • Bahne E, Hansen M, Bronden A, et al. Involvement of glucagon-like peptide-1 in the glucose-lowering effect of metformin. Diabetes Obes Metab. 2016;18(10):655–661.
    • (2016) Diabetes Obes Metab , vol.18 , Issue.10 , pp. 655-661
    • Bahne, E.1    Hansen, M.2    Bronden, A.3
  • 48
    • 84893058002 scopus 로고    scopus 로고
    • Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling
    • Kim MH, Jee JH, Park S, et al. Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling. J Endocrinol. 2014;220(2):117–128.
    • (2014) J Endocrinol , vol.220 , Issue.2 , pp. 117-128
    • Kim, M.H.1    Jee, J.H.2    Park, S.3
  • 49
    • 78951476273 scopus 로고    scopus 로고
    • Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-alpha in mice
    • Maida A, Lamont BJ, Cao X, et al. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-alpha in mice. Diabetologia. 2011;54(2):339–349.
    • (2011) Diabetologia , vol.54 , Issue.2 , pp. 339-349
    • Maida, A.1    Lamont, B.J.2    Cao, X.3
  • 50
    • 84929177057 scopus 로고    scopus 로고
    • Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats
    • Duca FA, Cote CD, Rasmussen BA, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21(5):506–511.•• This study established a gut-brain-liver pathway underlying metformin-induced suppression of hepatic glucose production in rats.
    • (2015) Nat Med , vol.21 , Issue.5 , pp. 506-511
    • Duca, F.A.1    Cote, C.D.2    Rasmussen, B.A.3
  • 51
    • 85026284591 scopus 로고    scopus 로고
    • The acute glucose-lowering effect of metformin in patients with type 2 diabetes is partly glucagon-like peptide-1-dependent
    • Hansen M, Bahne E, Sonne DP, et al. The acute glucose-lowering effect of metformin in patients with type 2 diabetes is partly glucagon-like peptide-1-dependent. Diabetologia. 2015;58(Suppl):S110.
    • (2015) Diabetologia , vol.58 , pp. S110
    • Hansen, M.1    Bahne, E.2    Sonne, D.P.3
  • 52
    • 0026510891 scopus 로고
    • Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man
    • Eissele R, Goke R, Willemer S, et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest. 1992;22(4):283–291.
    • (1992) Eur J Clin Invest , vol.22 , Issue.4 , pp. 283-291
    • Eissele, R.1    Goke, R.2    Willemer, S.3
  • 53
    • 84969752886 scopus 로고    scopus 로고
    • Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials
    • DeFronzo RA, Buse JB, Kim T, et al. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY:results from two randomised trials. Diabetologia. 2016;59(8):1645–1654.• This paper provided mechanistic insights into the gastrointestinal-mediated glucose-lowering effect of metformin in patients with type 2 diabetes.
    • (2016) Diabetologia , vol.59 , Issue.8 , pp. 1645-1654
    • DeFronzo, R.A.1    Buse, J.B.2    Kim, T.3
  • 54
    • 0016756636 scopus 로고
    • Inhibition of bile salt absorption by blood-sugar lowering biguanides
    • Caspary WF, Creutzfeldt W. Inhibition of bile salt absorption by blood-sugar lowering biguanides. Diabetologia. 1975;11(2):113–117.
    • (1975) Diabetologia , vol.11 , Issue.2 , pp. 113-117
    • Caspary, W.F.1    Creutzfeldt, W.2
  • 55
    • 0031847175 scopus 로고    scopus 로고
    • Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus
    • Scarpello JH, Hodgson E, Howlett HC. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet Med. 1998;15(8):651–656.
    • (1998) Diabet Med , vol.15 , Issue.8 , pp. 651-656
    • Scarpello, J.H.1    Hodgson, E.2    Howlett, H.C.3
  • 56
    • 84937706274 scopus 로고    scopus 로고
    • Specific inhibition of bile acid transport alters plasma lipids and GLP-1
    • Rudling M, Camilleri M, Graffner H, et al. Specific inhibition of bile acid transport alters plasma lipids and GLP-1. BMC Cardiovasc Disord. 2015;15:75.
    • (2015) BMC Cardiovasc Disord , vol.15 , pp. 75
    • Rudling, M.1    Camilleri, M.2    Graffner, H.3
  • 57
    • 84962374537 scopus 로고    scopus 로고
    • Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes
    • Sonne DP, Knop FK., Comment on Xu, et al. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diabetes Care. 2015;38:1858–1867, e215.
    • (2015) Diabetes Care , vol.38 , pp. 1858-1867, e215
    • Sonne, D.P.1    Knop, F.K.2
  • 58
    • 55049094158 scopus 로고    scopus 로고
    • Bile acids and signal transduction: role in glucose homeostasis
    • Nguyen A, Bouscarel B. Bile acids and signal transduction:role in glucose homeostasis. Cell Signal. 2008;20(12):2180–2197.
    • (2008) Cell Signal , vol.20 , Issue.12 , pp. 2180-2197
    • Nguyen, A.1    Bouscarel, B.2
  • 59
    • 84874087110 scopus 로고    scopus 로고
    • Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients
    • Sonne DP, Hare KJ, Martens P, et al. Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients. Am J Physiol Gastrointest Liver Physiol. 2012;304(4):G413–G419.
    • (2012) Am J Physiol Gastrointest Liver Physiol , vol.304 , Issue.4 , pp. G413-G419
    • Sonne, D.P.1    Hare, K.J.2    Martens, P.3
  • 60
    • 84864394573 scopus 로고    scopus 로고
    • The role of bile after roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control
    • Pournaras DJ, Glicksman C, Vincent RP, et al. The role of bile after roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–3619.
    • (2012) Endocrinology , vol.153 , Issue.8 , pp. 3613-3619
    • Pournaras, D.J.1    Glicksman, C.2    Vincent, R.P.3
  • 61
    • 84952695427 scopus 로고    scopus 로고
    • Increased bile acid synthesis and deconjugation after biliopancreatic diversion
    • Ferrannini E, Camastra S, Astiarraga B, et al. Increased bile acid synthesis and deconjugation after biliopancreatic diversion. Diabetes. 2015;64(10):3377–3385.
    • (2015) Diabetes , vol.64 , Issue.10 , pp. 3377-3385
    • Ferrannini, E.1    Camastra, S.2    Astiarraga, B.3
  • 62
    • 84944706313 scopus 로고    scopus 로고
    • Comparative effects of bile diversion and duodenal-jejunal bypass on glucose and lipid metabolism in male diabetic rats
    • Zhang X, Liu T, Wang Y, et al. Comparative effects of bile diversion and duodenal-jejunal bypass on glucose and lipid metabolism in male diabetic rats. Obes Surg. 2016;26(7):1565–1575.
    • (2016) Obes Surg , vol.26 , Issue.7 , pp. 1565-1575
    • Zhang, X.1    Liu, T.2    Wang, Y.3
  • 63
    • 33645509321 scopus 로고    scopus 로고
    • Farnesoid X receptor is essential for normal glucose homeostasis
    • Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis. The Journal of Clinical Investigation. 2006;116(4):1102–1109.
    • (2006) The Journal of Clinical Investigation , vol.116 , Issue.4 , pp. 1102-1109
    • Ma, K.1    Saha, P.K.2    Chan, L.3
  • 64
    • 56449093424 scopus 로고    scopus 로고
    • Glucose sensing in L cells: a primary cell study
    • Reimann F, Habib AM, Tolhurst G, et al. Glucose sensing in L cells:a primary cell study. Cell Metab. 2008;8(6):532–539.
    • (2008) Cell Metab , vol.8 , Issue.6 , pp. 532-539
    • Reimann, F.1    Habib, A.M.2    Tolhurst, G.3
  • 65
    • 84971654866 scopus 로고    scopus 로고
    • A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells
    • Pham H, Hui H, Morvaridi S, et al. A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells. Biochem Biophys Res Commun. 2016;475(3):295–300.
    • (2016) Biochem Biophys Res Commun , vol.475 , Issue.3 , pp. 295-300
    • Pham, H.1    Hui, H.2    Morvaridi, S.3
  • 66
    • 84876326720 scopus 로고    scopus 로고
    • Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans
    • Wu T, Bound MJ, Standfield SD, et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes Metab. 2013;15(5):474–477.
    • (2013) Diabetes Obes Metab , vol.15 , Issue.5 , pp. 474-477
    • Wu, T.1    Bound, M.J.2    Standfield, S.D.3
  • 67
    • 84866125785 scopus 로고    scopus 로고
    • Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers
    • Adrian TE, Gariballa S, Parekh KA, et al. Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers. Diabetologia. 2012;55(9):2343–2347.
    • (2012) Diabetologia , vol.55 , Issue.9 , pp. 2343-2347
    • Adrian, T.E.1    Gariballa, S.2    Parekh, K.A.3
  • 68
    • 84876248677 scopus 로고    scopus 로고
    • Effects of taurocholic acid on glycemic, glucagon-like peptide-1, and insulin responses to small intestinal glucose infusion in healthy humans
    • Wu T, Bound MJ, Standfield SD, et al. Effects of taurocholic acid on glycemic, glucagon-like peptide-1, and insulin responses to small intestinal glucose infusion in healthy humans. J Clin Endocrinol Metab. 2013;98(4):E718–E722.
    • (2013) J Clin Endocrinol Metab , vol.98 , Issue.4 , pp. E718-E722
    • Wu, T.1    Bound, M.J.2    Standfield, S.D.3
  • 69
    • 80054862011 scopus 로고    scopus 로고
    • Bile acid is a host factor that regulates the composition of the cecal microbiota in rats
    • Islam KB, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141(5):1773–1781.
    • (2011) Gastroenterology , vol.141 , Issue.5 , pp. 1773-1781
    • Islam, K.B.1    Fukiya, S.2    Hagio, M.3
  • 70
    • 84961794999 scopus 로고    scopus 로고
    • Gut microbiota in health and disease: an overview focused on metabolic inflammation
    • Nagpal R, Kumar M, Yadav AK, et al. Gut microbiota in health and disease:an overview focused on metabolic inflammation. Benef Microbes. 2016;7(2):181–194.
    • (2016) Benef Microbes , vol.7 , Issue.2 , pp. 181-194
    • Nagpal, R.1    Kumar, M.2    Yadav, A.K.3
  • 71
    • 84897960120 scopus 로고    scopus 로고
    • An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice
    • Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–735.
    • (2014) Gut , vol.63 , Issue.5 , pp. 727-735
    • Shin, N.R.1    Lee, J.C.2    Lee, H.Y.3
  • 72
    • 38449104720 scopus 로고    scopus 로고
    • Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly
    • Collado MC, Derrien M, Isolauri E, et al. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol. 2007;73(23):7767–7770.
    • (2007) Appl Environ Microbiol , vol.73 , Issue.23 , pp. 7767-7770
    • Collado, M.C.1    Derrien, M.2    Isolauri, E.3
  • 73
    • 84949772416 scopus 로고    scopus 로고
    • Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota
    • Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–266.• This paper linked metformin therapy to the functional shift of gut microbiota in patients with type 2 diabetes.
    • (2015) Nature , vol.528 , Issue.7581 , pp. 262-266
    • Forslund, K.1    Hildebrand, F.2    Nielsen, T.3
  • 74
    • 84923079981 scopus 로고    scopus 로고
    • Gastric emptying and glycaemia in health and diabetes mellitus
    • Phillips LK, Deane AM, Jones KL, et al. Gastric emptying and glycaemia in health and diabetes mellitus. Nat Rev Endocrinol. 2015;11(2):112–128.
    • (2015) Nat Rev Endocrinol , vol.11 , Issue.2 , pp. 112-128
    • Phillips, L.K.1    Deane, A.M.2    Jones, K.L.3
  • 75
    • 0015186540 scopus 로고
    • Biguanides and gastric emptying in man
    • Eisner M, Berger W. Biguanides and gastric emptying in man. Digestion. 1971;4(5):309–313.
    • (1971) Digestion , vol.4 , Issue.5 , pp. 309-313
    • Eisner, M.1    Berger, W.2
  • 76
    • 84925936466 scopus 로고    scopus 로고
    • Increased skeletal muscle glucose uptake by rosemary extract through AMPK activation
    • Naimi M, Tsakiridis T, Stamatatos TC, et al. Increased skeletal muscle glucose uptake by rosemary extract through AMPK activation. Appl Physiol Nutr Meta. 2015;40(4):407–413.
    • (2015) Appl Physiol Nutr Meta , vol.40 , Issue.4 , pp. 407-413
    • Naimi, M.1    Tsakiridis, T.2    Stamatatos, T.C.3
  • 77
    • 0037341552 scopus 로고    scopus 로고
    • Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2
    • Gunton JE, Delhanty PJ, Takahashi S, et al. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J Clin Endocrinol Metab. 2003;88(3):1323–1332.
    • (2003) J Clin Endocrinol Metab , vol.88 , Issue.3 , pp. 1323-1332
    • Gunton, J.E.1    Delhanty, P.J.2    Takahashi, S.3
  • 78
    • 31844437335 scopus 로고    scopus 로고
    • Metformin improves atypical protein kinase C activation by insulin and phosphatidylinositol-3,4,5-(PO4)3 in muscle of diabetic subjects
    • Luna V, Casauban L, Sajan MP, et al. Metformin improves atypical protein kinase C activation by insulin and phosphatidylinositol-3,4,5-(PO4)3 in muscle of diabetic subjects. Diabetologia. 2006;49(2):375–382.
    • (2006) Diabetologia , vol.49 , Issue.2 , pp. 375-382
    • Luna, V.1    Casauban, L.2    Sajan, M.P.3
  • 79
    • 2542424151 scopus 로고    scopus 로고
    • Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes
    • Natali A, Baldeweg S, Toschi E, et al. Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes. Diabetes Care. 2004;27(6):1349–1357.
    • (2004) Diabetes Care , vol.27 , Issue.6 , pp. 1349-1357
    • Natali, A.1    Baldeweg, S.2    Toschi, E.3
  • 80
    • 84886382152 scopus 로고    scopus 로고
    • Inflammatory cytokines and chemokines, skeletal muscle and polycystic ovary syndrome: effects of pioglitazone and metformin treatment
    • Ciaraldi TP, Aroda V, Mudaliar SR, et al. Inflammatory cytokines and chemokines, skeletal muscle and polycystic ovary syndrome:effects of pioglitazone and metformin treatment. Metabolism. 2013;62(11):1587–1596.
    • (2013) Metabolism , vol.62 , Issue.11 , pp. 1587-1596
    • Ciaraldi, T.P.1    Aroda, V.2    Mudaliar, S.R.3
  • 81
    • 84864062799 scopus 로고    scopus 로고
    • Overview of metformin: special focus on metformin extended release
    • Ali S, Fonseca V. Overview of metformin:special focus on metformin extended release. Expert Opin Pharmacother. 2012;13(12):1797–1805.
    • (2012) Expert Opin Pharmacother , vol.13 , Issue.12 , pp. 1797-1805
    • Ali, S.1    Fonseca, V.2
  • 82
    • 0035186582 scopus 로고    scopus 로고
    • Oral hypoglycaemic drugs and gastrointestinal symptoms in diabetes mellitus
    • Bytzer P, Talley NJ, Jones MP, et al. Oral hypoglycaemic drugs and gastrointestinal symptoms in diabetes mellitus. Aliment Pharmacol Ther. 2001;15(1):137–142.
    • (2001) Aliment Pharmacol Ther , vol.15 , Issue.1 , pp. 137-142
    • Bytzer, P.1    Talley, N.J.2    Jones, M.P.3
  • 83
    • 84867798614 scopus 로고    scopus 로고
    • A role for endogenous peptide YY in tachykinin NK(2) receptor-triggered 5-HT release from guinea pig isolated colonic mucosa
    • Kojima S, Tohei A, Anzai N. A role for endogenous peptide YY in tachykinin NK(2) receptor-triggered 5-HT release from guinea pig isolated colonic mucosa. Br J Pharmacol. 2012;167(6):1362–1368.
    • (2012) Br J Pharmacol , vol.167 , Issue.6 , pp. 1362-1368
    • Kojima, S.1    Tohei, A.2    Anzai, N.3
  • 84
    • 84888202010 scopus 로고    scopus 로고
    • Gut motility and enteroendocrine secretion
    • Wu T, Rayner CK, Young RL, et al. Gut motility and enteroendocrine secretion. Curr Opin Pharmacol. 2013;13(6):928–934.
    • (2013) Curr Opin Pharmacol , vol.13 , Issue.6 , pp. 928-934
    • Wu, T.1    Rayner, C.K.2    Young, R.L.3
  • 85
    • 84937735700 scopus 로고    scopus 로고
    • Therapeutic use of metformin in prediabetes and diabetes prevention
    • Hostalek U, Gwilt M, Hildemann S. Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs. 2015;75(10):1071–1094.
    • (2015) Drugs , vol.75 , Issue.10 , pp. 1071-1094
    • Hostalek, U.1    Gwilt, M.2    Hildemann, S.3
  • 86
    • 77649254732 scopus 로고    scopus 로고
    • Secondary failure of metformin monotherapy in clinical practice
    • Brown JB, Conner C, Nichols GA. Secondary failure of metformin monotherapy in clinical practice. Diabetes Care. 2010;33(3):501–506.
    • (2010) Diabetes Care , vol.33 , Issue.3 , pp. 501-506
    • Brown, J.B.1    Conner, C.2    Nichols, G.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.