-
1
-
-
0025837055
-
Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects
-
DeFronzo RA, Barzilai N, Simonson DC. Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. J Clin Endocrinol Metab. 1991;73:1294–1301.
-
(1991)
J Clin Endocrinol Metab
, vol.73
, pp. 1294-1301
-
-
DeFronzo, R.A.1
Barzilai, N.2
Simonson, D.C.3
-
2
-
-
0032568257
-
Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus
-
Inzucchi SE, Maggs DG, Spollett GR, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med. 1998;338:867–872.
-
(1998)
N Engl J Med
, vol.338
, pp. 867-872
-
-
Inzucchi, S.E.1
Maggs, D.G.2
Spollett, G.R.3
-
3
-
-
0024385058
-
Hypoglycaemic effect of metformin in genetically obese (fa/fa) rats results from an increased utilization of blood glucose by intestine
-
Pénicaud L, Hitier Y, Ferré P, Girard J. Hypoglycaemic effect of metformin in genetically obese (fa/fa) rats results from an increased utilization of blood glucose by intestine. Biochem J. 1989;262:881–885.
-
(1989)
Biochem J
, vol.262
, pp. 881-885
-
-
Pénicaud, L.1
Hitier, Y.2
Ferré, P.3
Girard, J.4
-
4
-
-
0031614038
-
Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes
-
Lee A, Morley JE. Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes Res. 1998;6:47–53.
-
(1998)
Obes Res
, vol.6
, pp. 47-53
-
-
Lee, A.1
Morley, J.E.2
-
5
-
-
0026541437
-
The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes
-
Sum CF, Webster JM, Johnson AB, Catalano C, Cooper BG, Taylor R. The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes. Diabet Med. 1992;9:61–65.
-
(1992)
Diabet Med
, vol.9
, pp. 61-65
-
-
Sum, C.F.1
Webster, J.M.2
Johnson, A.B.3
Catalano, C.4
Cooper, B.G.5
Taylor, R.6
-
6
-
-
84962094356
-
The primary glucose-lowering effect of metformin resides in the gut, not the circulation. Results from short-term pharmacokinetic and 12-week dose-ranging studies
-
Buse JB, DeFronzo RA, Rosenstock J, et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation. Results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care. 2016;39:198–205.
-
(2016)
Diabetes Care
, vol.39
, pp. 198-205
-
-
Buse, J.B.1
DeFronzo, R.A.2
Rosenstock, J.3
-
8
-
-
0023638829
-
Glucagon-like peptide-1 7-36: a physiological incretin in man
-
Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987;2:1300–1304.
-
(1987)
Lancet
, vol.2
, pp. 1300-1304
-
-
Kreymann, B.1
Williams, G.2
Ghatei, M.A.3
Bloom, S.R.4
-
9
-
-
13344282056
-
A role for glucagon-like peptide-1 in the central regulation of feeding
-
Turton MD, O'Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379:69–72.
-
(1996)
Nature
, vol.379
, pp. 69-72
-
-
Turton, M.D.1
O'Shea, D.2
Gunn, I.3
-
10
-
-
84926648779
-
Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease
-
Sandoval DA, D'Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev. 2015;95:513–548.
-
(2015)
Physiol Rev
, vol.95
, pp. 513-548
-
-
Sandoval, D.A.1
D'Alessio, D.A.2
-
11
-
-
17844399596
-
Glucagon-like peptide-1 mediates the therapeutic actions of DPP-IV inhibitors
-
Holst JJ, Deacon CF. Glucagon-like peptide-1 mediates the therapeutic actions of DPP-IV inhibitors. Diabetologia. 2005;48:612–615.
-
(2005)
Diabetologia
, vol.48
, pp. 612-615
-
-
Holst, J.J.1
Deacon, C.F.2
-
12
-
-
84879189059
-
The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty
-
Plamboeck A, Veedfald S, Deacon CF, et al. The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am J Physiol Gastrointest Liver Physiol. 2013;304:G1117–G1127.
-
(2013)
Am J Physiol Gastrointest Liver Physiol
, vol.304
, pp. G1117-G1127
-
-
Plamboeck, A.1
Veedfald, S.2
Deacon, C.F.3
-
13
-
-
22344448987
-
Effects of metformin on glucagon-like peptide-1 levels in obese patients with and without type 2 diabetes
-
Mannucci E, Tesi F, Bardini G, et al. Effects of metformin on glucagon-like peptide-1 levels in obese patients with and without type 2 diabetes. Diabetes Nutr Metab. 2004;17:336–342.
-
(2004)
Diabetes Nutr Metab
, vol.17
, pp. 336-342
-
-
Mannucci, E.1
Tesi, F.2
Bardini, G.3
-
14
-
-
0002067332
-
Effects of metformin on intestinal and pancreatic endocrine secretion in type 2 (non-insulin-dependent) diabetes
-
In, Belfiore F, Lorenzi M, Molinatti GM, Porta M, eds., Basel, Switzerland, Karger, p
-
Lugari R, Dell'Anna C, Sarti L, Gnudi A. Effects of metformin on intestinal and pancreatic endocrine secretion in type 2 (non-insulin-dependent) diabetes. In: Molecular and Cell Biology of Type 2 Diabetes and its Complications. Belfiore F, Lorenzi M, Molinatti GM, Porta M, eds. Basel, Switzerland: Karger; 1998;p. 161–163.
-
(1998)
Molecular and Cell Biology of Type 2 Diabetes and its Complications
, pp. 161-163
-
-
Lugari, R.1
Dell'Anna, C.2
Sarti, L.3
Gnudi, A.4
-
15
-
-
0035097211
-
Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects
-
Mannucci E, Ognibene A, Cremasco F, et al. Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects. Diabetes Care. 2001;24:489–494.
-
(2001)
Diabetes Care
, vol.24
, pp. 489-494
-
-
Mannucci, E.1
Ognibene, A.2
Cremasco, F.3
-
16
-
-
82355165097
-
Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell
-
Mulherin AJ, Oh AH, Kim H, Grieco A, Lauffer LM, Brubaker PL. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology. 2011;152:4610–4619.
-
(2011)
Endocrinology
, vol.152
, pp. 4610-4619
-
-
Mulherin, A.J.1
Oh, A.H.2
Kim, H.3
Grieco, A.4
Lauffer, L.M.5
Brubaker, P.L.6
-
17
-
-
84923917065
-
An analysis of co-secretion and co-expression of gut hormones from male rat proximal and distal small intestine
-
Svendsen B, Pedersen J, Jacob Wewer Albrechtsen N, et al. An analysis of co-secretion and co-expression of gut hormones from male rat proximal and distal small intestine. Endocrinology. 2015;156:847–857.
-
(2015)
Endocrinology
, vol.156
, pp. 847-857
-
-
Svendsen, B.1
Pedersen, J.2
Jacob Wewer Albrechtsen, N.3
-
18
-
-
84903759811
-
Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus
-
Napolitano A, Miller S, Nicholls AW, et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One. 2014;9:e100778.
-
(2014)
PLoS One
, vol.9
-
-
Napolitano, A.1
Miller, S.2
Nicholls, A.W.3
-
19
-
-
78951476273
-
Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice
-
Maida A, Lamont BJ, Cao X, Drucker DJ. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia. 2011;54:339–349.
-
(2011)
Diabetologia
, vol.54
, pp. 339-349
-
-
Maida, A.1
Lamont, B.J.2
Cao, X.3
Drucker, D.J.4
-
20
-
-
84893058002
-
Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling
-
Kim M-H, Jee J-H, Park S, Lee M-S, Kim K-W, Lee M-K. Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling. J Endocrinol. 2014;220:117–128.
-
(2014)
J Endocrinol
, vol.220
, pp. 117-128
-
-
Kim, M.-H.1
Jee, J.-H.2
Park, S.3
Lee, M.-S.4
Kim, K.-W.5
Lee, M.-K.6
-
21
-
-
84884660966
-
Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells
-
Kappe C, Patrone C, Holst JJ, Zhang Q, Sjöholm A. Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J Gastroenterol. 2013;48:322–332.
-
(2013)
J Gastroenterol
, vol.48
, pp. 322-332
-
-
Kappe, C.1
Patrone, C.2
Holst, J.J.3
Zhang, Q.4
Sjöholm, A.5
-
22
-
-
78951485049
-
Metformin activates the AMPK pathway and improves survival of murine and human L-cells but does not directly increase GLP-1 secretion
-
(; 87 Abstract
-
Lauffer LM, Grieco A, Iakoubov R, Brubaker PI. Metformin activates the AMPK pathway and improves survival of murine and human L-cells but does not directly increase GLP-1 secretion. Diabetologia 2009;52(suppl 1); 87 Abstract.
-
(2009)
Diabetologia
, vol.52
-
-
Lauffer, L.M.1
Grieco, A.2
Iakoubov, R.3
Brubaker, P.I.4
-
23
-
-
84987716587
-
Hepatobiliary function
-
In, 2nd ed, Chapter 45; Sauders, Elsevier;
-
Boron WF, Boulpaep EL. Hepatobiliary function. In: Medical Physiology. 2nd ed, Chapter 45; Sauders, Elsevier; 2012:993–995.
-
(2012)
Medical Physiology
, pp. 993-995
-
-
Boron, W.F.1
Boulpaep, E.L.2
-
24
-
-
84895520482
-
The bile acid TGR5 membrane receptor: from basic research to clinical application
-
Duboc H, Taché Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis. 2014;46:302–312.
-
(2014)
Dig Liver Dis
, vol.46
, pp. 302-312
-
-
Duboc, H.1
Taché, Y.2
Hofmann, A.F.3
-
25
-
-
0033591297
-
Identification of a nuclear receptor for bile acids
-
Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–1365.
-
(1999)
Science
, vol.284
, pp. 1362-1365
-
-
Makishima, M.1
Okamoto, A.Y.2
Repa, J.J.3
-
26
-
-
58249110568
-
Role of bile acids and bile acid receptors in metabolic regulation
-
Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–191.
-
(2009)
Physiol Rev
, vol.89
, pp. 147-191
-
-
Lefebvre, P.1
Cariou, B.2
Lien, F.3
Kuipers, F.4
Staels, B.5
-
27
-
-
69149083245
-
TGR5-mediated bile acid sensing controls glucose homeostasis
-
Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–177.
-
(2009)
Cell Metab
, vol.10
, pp. 167-177
-
-
Thomas, C.1
Gioiello, A.2
Noriega, L.3
-
28
-
-
84937706274
-
Specific inhibition of bile acid transport alters plasma lipids and GLP-1
-
Rudling M, Camilleri M, Graffner H, Holst JJ, Rikner L. Specific inhibition of bile acid transport alters plasma lipids and GLP-1. BMC Cardiovasc Disord. 2015;15:75.
-
(2015)
BMC Cardiovasc Disord
, vol.15
, pp. 75
-
-
Rudling, M.1
Camilleri, M.2
Graffner, H.3
Holst, J.J.4
Rikner, L.5
-
29
-
-
0031847175
-
Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus
-
Scarpello JH, Hodgson E, Howlett HC. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet Med. 1998;15:651–656.
-
(1998)
Diabet Med
, vol.15
, pp. 651-656
-
-
Scarpello, J.H.1
Hodgson, E.2
Howlett, H.C.3
-
30
-
-
84946088116
-
Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells
-
Trabelsi M-S, Daoudi M, Prawitt J, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015;6:7629.
-
(2015)
Nat Commun
, vol.6
, pp. 7629
-
-
Trabelsi, M.-S.1
Daoudi, M.2
Prawitt, J.3
-
31
-
-
13844299425
-
Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1
-
Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329:386–390.
-
(2005)
Biochem Biophys Res Commun
, vol.329
, pp. 386-390
-
-
Katsuma, S.1
Hirasawa, A.2
Tsujimoto, G.3
-
32
-
-
84876326720
-
Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans
-
Wu T, Bound MJ, Standfield SD, et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes Metab. 2013;15:474–477.
-
(2013)
Diabetes Obes Metab
, vol.15
, pp. 474-477
-
-
Wu, T.1
Bound, M.J.2
Standfield, S.D.3
-
33
-
-
0036847645
-
Effects of metformin on bile salt transport by monolayers of human intestinal Caco-2 cells
-
Carter D, Howlett HCS, Wiernsperger NF, Bailey C. Effects of metformin on bile salt transport by monolayers of human intestinal Caco-2 cells. Diabetes Obes Metab. 2002;4:424–427.
-
(2002)
Diabetes Obes Metab
, vol.4
, pp. 424-427
-
-
Carter, D.1
Howlett, H.C.S.2
Wiernsperger, N.F.3
Bailey, C.4
-
35
-
-
83455243025
-
Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes
-
Chen L, Yao X, Young A, et al. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes. Am J Physiol Endocrinol Metab. 2012;302:E68–76.
-
(2012)
Am J Physiol Endocrinol Metab
, vol.302
, pp. 68-76
-
-
Chen, L.1
Yao, X.2
Young, A.3
-
37
-
-
0017653672
-
Alteration of bile acid metabolism and vitamin-B12-absorption in diabetics on biguanides
-
Caspary WF, Zavada I, Reimold W, Deuticke U, Emrich D, Willms B. Alteration of bile acid metabolism and vitamin-B12-absorption in diabetics on biguanides. Diabetologia. 1977;13:187–193.
-
(1977)
Diabetologia
, vol.13
, pp. 187-193
-
-
Caspary, W.F.1
Zavada, I.2
Reimold, W.3
Deuticke, U.4
Emrich, D.5
Willms, B.6
-
38
-
-
84859587827
-
Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms
-
Lin HV, Frassetto A, Kowalik EJ, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7:e35240.
-
(2012)
PLoS One
, vol.7
-
-
Lin, H.V.1
Frassetto, A.2
Kowalik, E.J.3
-
39
-
-
70350662669
-
Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal
-
Cani PD, Lecourt E, Dewulf EM, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr. 2009;90:1236–1243.
-
(2009)
Am J Clin Nutr
, vol.90
, pp. 1236-1243
-
-
Cani, P.D.1
Lecourt, E.2
Dewulf, E.M.3
-
40
-
-
84949772416
-
Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota
-
Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–266.
-
(2015)
Nature
, vol.528
, pp. 262-266
-
-
Forslund, K.1
Hildebrand, F.2
Nielsen, T.3
-
41
-
-
84858251477
-
Prebiotic fiber increases hepatic acetyl CoA carboxylase phosphorylation and suppresses glucose-dependent insulinotropic polypeptide secretion more effectively when used with metformin in obese rats
-
Pyra KA, Saha DC, Reimer RA. Prebiotic fiber increases hepatic acetyl CoA carboxylase phosphorylation and suppresses glucose-dependent insulinotropic polypeptide secretion more effectively when used with metformin in obese rats. J Nutr. 2012;142:213–220.
-
(2012)
J Nutr
, vol.142
, pp. 213-220
-
-
Pyra, K.A.1
Saha, D.C.2
Reimer, R.A.3
-
42
-
-
84897960120
-
An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice
-
Shin N-R, Lee J-C, Lee H-Y, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63:727–735.
-
(2014)
Gut
, vol.63
, pp. 727-735
-
-
Shin, N.-R.1
Lee, J.-C.2
Lee, H.-Y.3
-
43
-
-
17844374375
-
Inhibition of dipeptidyl peptidase IV activity by oral metformin in Type 2 diabetes
-
Lindsay JR, Duffy NA, McKillop AM, et al. Inhibition of dipeptidyl peptidase IV activity by oral metformin in Type 2 diabetes. Diabet Med. 2005;22:654–657.
-
(2005)
Diabet Med
, vol.22
, pp. 654-657
-
-
Lindsay, J.R.1
Duffy, N.A.2
McKillop, A.M.3
-
44
-
-
33748531290
-
Inhibition of dipeptidyl peptidase-IV activity by metformin enhances the antidiabetic effects of glucagon-like peptide-1
-
Green BD, Irwin N, Duffy NA, Gault VA, O'Harte FPM, Flatt PR. Inhibition of dipeptidyl peptidase-IV activity by metformin enhances the antidiabetic effects of glucagon-like peptide-1. Eur J Pharmacol. 2006;547:192–199.
-
(2006)
Eur J Pharmacol
, vol.547
, pp. 192-199
-
-
Green, B.D.1
Irwin, N.2
Duffy, N.A.3
Gault, V.A.4
O'Harte, F.P.M.5
Flatt, P.R.6
-
45
-
-
66449129517
-
Investigation of the effect of oral metformin on dipeptidylpeptidase-4 (DPP-4) activity in type 2 diabetes
-
Cuthbertson J, Patterson S, O'Harte FPM, Bell PM. Investigation of the effect of oral metformin on dipeptidylpeptidase-4 (DPP-4) activity in type 2 diabetes. Diabet Med. 2009;26:649–654.
-
(2009)
Diabet Med
, vol.26
, pp. 649-654
-
-
Cuthbertson, J.1
Patterson, S.2
O'Harte, F.P.M.3
Bell, P.M.4
-
46
-
-
84907970634
-
Mechanism of increase in plasma intact GLP-1 by metformin in type 2 diabetes: stimulation of GLP-1 secretion or reduction in plasma DPP-4 activity?
-
Wu T, Thazhath SS, Bound MJ, Jones KL, Horowitz M, Rayner CK. Mechanism of increase in plasma intact GLP-1 by metformin in type 2 diabetes: stimulation of GLP-1 secretion or reduction in plasma DPP-4 activity? Diabetes Res Clin Pract. 2014;106:e3–6.
-
(2014)
Diabetes Res Clin Pract
, vol.106
, pp. 3-6
-
-
Wu, T.1
Thazhath, S.S.2
Bound, M.J.3
Jones, K.L.4
Horowitz, M.5
Rayner, C.K.6
-
47
-
-
84863998110
-
Effects of chronic treatment with metformin on dipeptidyl peptidase-4 activity, glucagon-like peptide 1 and ghrelin in obese patients with type 2 diabetes mellitus: effects of chronic treatment with metformin on GLP-1, DPP-4 and ghrelin
-
Thondam SK, Cross A, Cuthbertson DJ, Wilding JP, Daousi C. Effects of chronic treatment with metformin on dipeptidyl peptidase-4 activity, glucagon-like peptide 1 and ghrelin in obese patients with type 2 diabetes mellitus: effects of chronic treatment with metformin on GLP-1, DPP-4 and ghrelin. Diabet Med. 2012;29:e205–210.
-
(2012)
Diabet Med
, vol.29
, pp. 205-210
-
-
Thondam, S.K.1
Cross, A.2
Cuthbertson, D.J.3
Wilding, J.P.4
Daousi, C.5
-
48
-
-
0036298693
-
Metformin effects on dipeptidylpeptidase IV degradation of glucagon-like peptide-1
-
Hinke SA, Kühn-Wache K, Hoffmann T, Pederson RA, McIntosh CHS, Demuth H-U. Metformin effects on dipeptidylpeptidase IV degradation of glucagon-like peptide-1. Biochem Biophys Res Commun. 2002;291:1302–1308.
-
(2002)
Biochem Biophys Res Commun
, vol.291
, pp. 1302-1308
-
-
Hinke, S.A.1
Kühn-Wache, K.2
Hoffmann, T.3
Pederson, R.A.4
McIntosh, C.H.S.5
Demuth, H.-U.6
-
49
-
-
0036435607
-
Enhanced secretion of glucagon-like peptide 1 by biguanide compounds
-
Yasuda N, Inoue T, Nagakura T, et al. Enhanced secretion of glucagon-like peptide 1 by biguanide compounds. Biochem Biophys Res Commun. 2002;298:779–784.
-
(2002)
Biochem Biophys Res Commun
, vol.298
, pp. 779-784
-
-
Yasuda, N.1
Inoue, T.2
Nagakura, T.3
-
50
-
-
78449274342
-
Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1
-
Migoya EM, Bergeron R, Miller JL, et al. Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1. Clin Pharmacol Ther. 2010;88:801–808.
-
(2010)
Clin Pharmacol Ther
, vol.88
, pp. 801-808
-
-
Migoya, E.M.1
Bergeron, R.2
Miller, J.L.3
-
51
-
-
84907189229
-
The impact of dipeptidyl peptidase 4 inhibition on incretin effect, glucose tolerance, and gastrointestinal-mediated glucose disposal in healthy subjects
-
Rhee NA, Østoft SH, Holst JJ, Deacon CF, Vilsbøll T, Knop FK. The impact of dipeptidyl peptidase 4 inhibition on incretin effect, glucose tolerance, and gastrointestinal-mediated glucose disposal in healthy subjects. Eur J Endocrinol. 2014;171:353–362.
-
(2014)
Eur J Endocrinol
, vol.171
, pp. 353-362
-
-
Rhee, N.A.1
Østoft, S.H.2
Holst, J.J.3
Deacon, C.F.4
Vilsbøll, T.5
Knop, F.K.6
-
52
-
-
84893035432
-
Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and “isoglycemic” intravenous glucose
-
Vardarli I, Arndt E, Deacon CF, Holst JJ, Nauck MA. Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and “isoglycemic” intravenous glucose. Diabetes. 2014;63:663–674.
-
(2014)
Diabetes
, vol.63
, pp. 663-674
-
-
Vardarli, I.1
Arndt, E.2
Deacon, C.F.3
Holst, J.J.4
Nauck, M.A.5
-
53
-
-
84867643750
-
Molecular mechanisms of lipoapoptosis and metformin protection in GLP-1 secreting cells
-
Kappe C, Holst JJ, Zhang Q, Sjöholm A. Molecular mechanisms of lipoapoptosis and metformin protection in GLP-1 secreting cells. Biochem Biophys Res Commun. 2012;427:91–95.
-
(2012)
Biochem Biophys Res Commun
, vol.427
, pp. 91-95
-
-
Kappe, C.1
Holst, J.J.2
Zhang, Q.3
Sjöholm, A.4
-
54
-
-
0032982267
-
Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion
-
Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology. 1999;140:1687–1694.
-
(1999)
Endocrinology
, vol.140
, pp. 1687-1694
-
-
Rocca, A.S.1
Brubaker, P.L.2
-
55
-
-
84880949323
-
Characterisation of oral and i.v. glucose handling in truncally vagotomised subjects with pyloroplasty
-
Plamboeck A, Veedfald S, Deacon CF, et al. Characterisation of oral and i.v. glucose handling in truncally vagotomised subjects with pyloroplasty. Eur J Endocrinol. 2013;169:187–201.
-
(2013)
Eur J Endocrinol
, vol.169
, pp. 187-201
-
-
Plamboeck, A.1
Veedfald, S.2
Deacon, C.F.3
-
56
-
-
0031034854
-
Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors
-
Balks HJ, Holst JJ, von zur Mühlen A, Brabant G. Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors. J Clin Endocrinol Metab. 1997;82:786–790.
-
(1997)
J Clin Endocrinol Metab
, vol.82
, pp. 786-790
-
-
Balks, H.J.1
Holst, J.J.2
von zur Mühlen, A.3
Brabant, G.4
-
57
-
-
84929177057
-
Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats
-
Duca FA, Côté CD, Rasmussen BA, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21:506–511.
-
(2015)
Nat Med
, vol.21
, pp. 506-511
-
-
Duca, F.A.1
Côté, C.D.2
Rasmussen, B.A.3
-
58
-
-
0034812998
-
A human cellular model for studying the regulation of glucagon-like peptide-1 secretion
-
Reimer RA, Darimont C, Gremlich S, Nicolas-Métral V, Rüegg UT, Macé K. A human cellular model for studying the regulation of glucagon-like peptide-1 secretion. Endocrinology. 2001;142:4522–4528.
-
(2001)
Endocrinology
, vol.142
, pp. 4522-4528
-
-
Reimer, R.A.1
Darimont, C.2
Gremlich, S.3
Nicolas-Métral, V.4
Rüegg, U.T.5
Macé, K.6
-
59
-
-
0029931341
-
Gastrin-releasing peptide is a novel mediator of proximal nutrient-induced proglucagon-derived peptide secretion from the distal gut
-
Roberge JN, Gronau KA, Brubaker PL. Gastrin-releasing peptide is a novel mediator of proximal nutrient-induced proglucagon-derived peptide secretion from the distal gut. Endocrinology. 1996;137:2383–2388.
-
(1996)
Endocrinology
, vol.137
, pp. 2383-2388
-
-
Roberge, J.N.1
Gronau, K.A.2
Brubaker, P.L.3
-
60
-
-
70649104753
-
Glucose, metformin, and AICAR regulate the expression of G protein-coupled receptor members in INS-1 beta cell
-
Pan QR, Li WH, Wang H, et al. Glucose, metformin, and AICAR regulate the expression of G protein-coupled receptor members in INS-1 beta cell. Horm Metab Res. 2009;41:799–804.
-
(2009)
Horm Metab Res
, vol.41
, pp. 799-804
-
-
Pan, Q.R.1
Li, W.H.2
Wang, H.3
|