메뉴 건너뛰기




Volumn 38, Issue 7, 2011, Pages 8696-8702

A feature selection method based on improved fisher's discriminant ratio for text sentiment classification

Author keywords

Feature selection; Fisher's discriminant ratio; Support vector machine; Text sentiment classification

Indexed keywords

FEATURE SELECTION; FEATURE SELECTION METHODS; FEATURE SETS; FISHER'S DISCRIMINANT; FISHER'S DISCRIMINANT RATIO; INFORMATION GAIN; RESEARCH PROBLEMS; SENTIMENT CLASSIFICATION; TEXT SENTIMENT CLASSIFICATION; VIRTUALIZATIONS;

EID: 79952444436     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.01.077     Document Type: Article
Times cited : (167)

References (26)
  • 1
    • 46249095180 scopus 로고    scopus 로고
    • Sentiment analysis in multiple languages: Feature selection for opinion classification in web forums
    • A. Ahmed, H. Chen, and A. Salem Sentiment analysis in multiple languages: feature selection for opinion classification in web forums ACM Transactions on Information Systems 26 3 2008
    • (2008) ACM Transactions on Information Systems , vol.26 , Issue.3
    • Ahmed, A.1    Chen, H.2    Salem, A.3
  • 3
    • 84872201395 scopus 로고    scopus 로고
    • Sentiment classification on customer feedback data: Noisy data, large feature vectors, and the role of linguistic analysis
    • Gamon, M. (2004). Sentiment classification on customer feedback data: Noisy data, large feature vectors, and the role of linguistic analysis. In Proceedings of the 20th International Conference on Computational Linguistics (p. 841).
    • (2004) Proceedings of the 20th International Conference on Computational Linguistics , pp. 841
    • Gamon, M.1
  • 6
    • 84872201395 scopus 로고    scopus 로고
    • Sentiment classification on customer feedback data: Noisy data, large feature vectors, and the role of linguistic analysis
    • Michael, G. (2004). Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis. In Proceedings the 20th international conference on computational linguistics.
    • (2004) Proceedings the 20th International Conference on Computational Linguistics
    • Michael, G.1
  • 8
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up? Sentiment Classification Using Machine Learning Techniques
    • Pang, B., Lee, L., Vaithyanathan, S. (2002). Thumbs up? Sentiment Classification Using Machine Learning Techniques. EMNLP'.
    • (2002) EMNLP'
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 11
    • 0035415706 scopus 로고    scopus 로고
    • Affect analysis of text using fuzzy semantic typing
    • DOI 10.1109/91.940962, PII S1063670601065377, Fuzzy Logic at the Turn of the Millennium
    • P. Subasic, and A. Huettner Affect analysis of text using fuzzy semantic typing IEEE Transactions Fuzzy System 9 4 2001 483 496 (Pubitemid 32933037)
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.4 , pp. 483-496
    • Subasic, P.1    Huettner, A.2
  • 12
    • 38649085269 scopus 로고    scopus 로고
    • An empirical study of sentiment analysis for chinese documents
    • DOI 10.1016/j.eswa.2007.05.028, PII S0957417407001534
    • S.B. Tan, and J. Zhang An Empirical study of sentiment analysis for chinese documents Expert Systems with Application 34 4 2008 2622 2629 (Pubitemid 351173767)
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2622-2629
    • Tan, S.1    Zhang, J.2
  • 14
    • 85112593657 scopus 로고    scopus 로고
    • Sentiment analysis using support vector machines with diverse information sources
    • Dekang Lin & Dekai Wu (Eds.) Barcelona, Spain
    • Tony, M., Nigel, C. (2004). Sentiment analysis using support vector machines with diverse information sources. In Dekang Lin & Dekai Wu (Eds.), Proceedings of EMNLP-2004 (pp. 412-418). Barcelona, Spain.
    • (2004) Proceedings of EMNLP-2004 , pp. 412-418
    • Tony, M.1    Nigel, C.2
  • 16
    • 18744413747 scopus 로고    scopus 로고
    • Unsupervised Learning of Semantic Orientation from A Hundred-billion-word Corpus
    • National Research Council Canada.
    • Turney, P. D., Littman, M. L. (2002) Unsupervised Learning of Semantic Orientation from A Hundred-billion-word Corpus. Technical Report EGB-1094, National Research Council Canada.
    • (2002) Technical Report EGB-1094
    • Turney, P.D.1    Littman, M.L.2
  • 18
    • 44049089056 scopus 로고    scopus 로고
    • A hybrid method of feature selection for chinese text sentiment classification
    • DOI 10.1109/FSKD.2007.49, 4406276, Proceedings - Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007
    • S.G. Wang, Y.J. Wei, W. Zhang, D.Y. Li, and W. Li A hybrid method of feature selection for chinese text sentiment classification [C] Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery 2007 IEEE Computer Society 435 439 (Pubitemid 351710936)
    • (2007) Proceedings - Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007 , vol.3 , pp. 435-439
    • Wang, S.1    Wei, Y.2    Zhang, W.3    Li, D.4    Li, W.5
  • 23
    • 0003141935 scopus 로고    scopus 로고
    • A Comparative study on feature selection in text categorization
    • Y.M. Yang, and J.O. Pedersen A Comparative study on feature selection in text categorization ICML 1997 412 420
    • (1997) ICML , pp. 412-420
    • Yang, Y.M.1    Pedersen, J.O.2
  • 25
    • 58349091868 scopus 로고    scopus 로고
    • Sentiment classification of online reviews to travel destinations by supervised machine learning approaches
    • Q. Ye, Z.Q. Zhang, and L. Rob Sentiment classification of online reviews to travel destinations by supervised machine learning approaches Expert System with Application 36 3 2009 6527 6535
    • (2009) Expert System with Application , vol.36 , Issue.3 , pp. 6527-6535
    • Ye, Q.1    Zhang, Z.Q.2    Rob, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.