메뉴 건너뛰기




Volumn 47, Issue 8, 2014, Pages 2582-2595

Simultaneous feature selection and Gaussian mixture model estimation for supervised classification problems

Author keywords

Clustering; Expectation maximization; Feature saliency; Feature selection; Gaussian mixture models; Remote sensing; Supervised learning

Indexed keywords

ALGORITHMS; COMMUNICATION CHANNELS (INFORMATION THEORY); EXPERIMENTS; FEATURE EXTRACTION; IMAGE SEGMENTATION; MAXIMUM PRINCIPLE; OBJECT RECOGNITION; REMOTE SENSING; SUPERVISED LEARNING;

EID: 84899480198     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.02.015     Document Type: Article
Times cited : (28)

References (45)
  • 3
    • 33745456231 scopus 로고    scopus 로고
    • Technical Report 1530, Computer Sciences, University of Wisconsin-Madison
    • X. Zhu, Semi-Supervised Learning Literature Survey, Technical Report 1530, Computer Sciences, University of Wisconsin-Madison, 2005.
    • (2005) Semi-Supervised Learning Literature Survey
    • Zhu, X.1
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM-algorithm
    • A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM-algorithm J. R. Stat. Soc. Ser. B 39 1 1977 1 38
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 7
    • 0002210265 scopus 로고
    • On the convergence properties of the em algorithm
    • C.F.J. Wu On the convergence properties of the EM algorithm Ann. Stat. 11 1 1983 95 103
    • (1983) Ann. Stat. , vol.11 , Issue.1 , pp. 95-103
    • Wu, C.F.J.1
  • 8
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash, and H. Liu Feature selection for classification Intell. Data Anal. 1 1997 131 156
    • (1997) Intell. Data Anal. , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 10
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1
  • 11
  • 12
    • 74649087307 scopus 로고    scopus 로고
    • A novel feature selection approach for biomedical data classification
    • Y. Peng, Z. Wu, and J. Jiang A novel feature selection approach for biomedical data classification J. Biomed. Inf. 43 1 2010 15 23
    • (2010) J. Biomed. Inf. , vol.43 , Issue.1 , pp. 15-23
    • Peng, Y.1    Wu, Z.2    Jiang, J.3
  • 13
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • DOI 10.1016/S0031-3203(99)00041-2
    • M. Kudo, and J. Sklansky Comparison of algorithms that select features for pattern classifiers Pattern Recognit. 33 2000 25 41 (Pubitemid 32081876)
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 15
    • 85013515810 scopus 로고
    • Comparative study of techniques for large scale feature selection
    • E. Gelsema, L. Kanal (Eds.)
    • F. Ferri, P. Pudil, M. Hatef, J. Kittler, Comparative study of techniques for large scale feature selection, in: E. Gelsema, L. Kanal (Eds.), Pattern Recognition in Practice IV, 1994, pp. 403-413.
    • (1994) Pattern Recognition in Practice IV , pp. 403-413
    • Ferri, F.1    Pudil, P.2    Hatef, M.3    Kittler, J.4
  • 16
    • 79959333539 scopus 로고    scopus 로고
    • A general framework for fast and interactive classification of optical VHR satellite imagery using hierarchical and planar Markov random fields
    • J. Kersten, M. Gaehler, and S. Voigt A general framework for fast and interactive classification of optical VHR satellite imagery using hierarchical and planar Markov random fields PFG Photogramm. Fernerkund. Geoinformation. 6 2010 439 449
    • (2010) PFG Photogramm. Fernerkund. Geoinformation. , vol.6 , pp. 439-449
    • Kersten, J.1    Gaehler, M.2    Voigt, S.3
  • 18
    • 46749103795 scopus 로고    scopus 로고
    • Gaussian mixture modeling by exploiting the Mahalanobis-distance
    • D. Ververidis, and C. Kotropoulos Gaussian mixture modeling by exploiting the Mahalanobis-distance IEEE Trans. Signal Process. 56 2008 2797 2811
    • (2008) IEEE Trans. Signal Process. , vol.56 , pp. 2797-2811
    • Ververidis, D.1    Kotropoulos, C.2
  • 23
    • 0017535866 scopus 로고
    • Branch and bound algorithm for feature subset selection
    • P.M. Narendra, and K. Fukunaga A branch and bound algorithm for feature subset selection IEEE Trans. Comput. 26 1977 917 922 (Pubitemid 8550870)
    • (1977) IEEE Transactions on Computers , vol.C26 , Issue.9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 24
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • A.W. Whitney A direct method of nonparametric measurement selection IEEE Trans. Comput. 20 9 1971 1100 1103
    • (1971) IEEE Trans. Comput. , vol.20 , Issue.9 , pp. 1100-1103
    • Whitney, A.W.1
  • 25
    • 0024895461 scopus 로고
    • A note on genetic algorithm for large-scale feature selection
    • W. Siedlecki, and J. Sklansky A note on genetic algorithm for large-scale feature selection Pattern Recognit. Lett. 10 5 1989 335 347
    • (1989) Pattern Recognit. Lett. , vol.10 , Issue.5 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 26
    • 0004066260 scopus 로고    scopus 로고
    • Wiley Series in Probability and Statistics, New York
    • G.J. McLachlan, D. Peel, Finite Mixture Models, Wiley Series in Probability and Statistics, New York, 2000.
    • (2000) Finite Mixture Models
    • McLachlan, G.J.1    Peel, D.2
  • 28
    • 0038309400 scopus 로고    scopus 로고
    • EM algorithms for Gaussian mixtures with split-and-merge operation
    • DOI 10.1016/S0031-3203(03)00059-1
    • Z. Zhang EM algorithms for Gaussian mixtures with split-and-merge operation Pattern Recognit. 36 9 2003 1973 1983 (Pubitemid 36726817)
    • (2003) Pattern Recognition , vol.36 , Issue.9 , pp. 1973-1983
    • Zhang, Z.1    Chen, C.2    Sun, J.3    Chan, K.L.4
  • 31
    • 0037965523 scopus 로고
    • Feature selection based on the approximation of class densities by finite mixtures of special type
    • P. Pudil, J. Novovicová, N. Choakjarernwanit, and J. Kittler Feature selection based on the approximation of class densities by finite mixtures of special type Pattern Recognit. 28 9 1995 1389 1398
    • (1995) Pattern Recognit. , vol.28 , Issue.9 , pp. 1389-1398
    • Pudil, P.1    Novovicová, J.2    Choakjarernwanit, N.3    Kittler, J.4
  • 32
    • 64849084369 scopus 로고    scopus 로고
    • Simultaneous localized feature selection and model detection for Gaussian mixtures
    • Y. Li, M. Dong, and J. Hua Simultaneous localized feature selection and model detection for Gaussian mixtures IEEE Trans. Pattern Anal. Mach. Intell. 31 2009 953 960
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , pp. 953-960
    • Li, Y.1    Dong, M.2    Hua, J.3
  • 33
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Mach. Learn. 46 1-3 2002 389 422 (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 34
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition system
    • T. Marill, and D.M. Green On the effectiveness of receptors in recognition system IEEE Trans. Inf. Theory 9 1963 11 17
    • (1963) IEEE Trans. Inf. Theory , vol.9 , pp. 11-17
    • Marill, T.1    Green, D.M.2
  • 35
    • 0033220764 scopus 로고    scopus 로고
    • Adaptive floating search methods in feature selection
    • DOI 10.1016/S0167-8655(99)00083-5
    • P. Somol, P. Pudil, J. Novovicová, and P. Paclík Adaptive floating search methods in feature selection Pattern Recognit. Lett. 20 1999 1157 1163 (Pubitemid 32261893)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1157-1163
    • Somol, P.1    Pudil, P.2    Novovicova, J.3    Paclik, P.4
  • 36
    • 84899472171 scopus 로고    scopus 로고
    • Airborne near-real-time monitoring of assembly and parking areas in case of large-scale public events and natural disasters
    • H. Roemer, J. Kersten, R. Kiefl, S. Plattner, A. Mager, and S. Voigt Airborne near-real-time monitoring of assembly and parking areas in case of large-scale public events and natural disasters Int. J. Geogr. Inf. Sci. 2013 1 18
    • (2013) Int. J. Geogr. Inf. Sci. , pp. 1-18
    • Roemer, H.1    Kersten, J.2    Kiefl, R.3    Plattner, S.4    Mager, A.5    Voigt, S.6
  • 41
    • 0035308429 scopus 로고    scopus 로고
    • Feature normalization and likelihood-based similarity measures for image retrieval
    • S. Aksoy, and R.M. Haralick Feature normalization and likelihood-based similarity measures for image retrieval Pattern Recognit. Lett. 22 2000 563 582
    • (2000) Pattern Recognit. Lett. , vol.22 , pp. 563-582
    • Aksoy, S.1    Haralick, R.M.2
  • 43
    • 84899487350 scopus 로고    scopus 로고
    • (accessed 23 November 2012)
    • 〈 http://vabene.dlr.de/vabene 〉, VABENE homepage, 2012 (accessed 23 November 2012).
    • (2012) VABENE Homepage
  • 45
    • 83155194287 scopus 로고    scopus 로고
    • A survey of clustering algorithms
    • O. Maimon, L. Rokach, Springer USA
    • L. Rokach A survey of clustering algorithms O. Maimon, L. Rokach, Data Mining and Knowledge Discovery Handbook 2010 Springer USA 269 298
    • (2010) Data Mining and Knowledge Discovery Handbook , pp. 269-298
    • Rokach, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.