메뉴 건너뛰기




Volumn 269, Issue , 2014, Pages 176-187

Embedded local feature selection within mixture of experts

Author keywords

Embedded feature selection; Local feature selection; Mixture of experts; Regularization

Indexed keywords

ARTIFICIAL INTELLIGENCE; SOFTWARE ENGINEERING;

EID: 84897053423     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.01.008     Document Type: Article
Times cited : (58)

References (55)
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti Using mutual information for selecting features in supervised neural net learning IEEE Trans. Neural Netw. 5 1994 537 550
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 537-550
    • Battiti, R.1
  • 6
    • 0004055894 scopus 로고    scopus 로고
    • Cambridge University Press Cambridge, United Kingdom
    • S. Boyd, and L. Vandenberghe Convex Optimization 2004 Cambridge University Press Cambridge, United Kingdom
    • (2004) Convex Optimization
    • Boyd, S.1    Vandenberghe, L.2
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 2001 5 32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 11
    • 84897089780 scopus 로고    scopus 로고
    • View-independent face recognition with hierarchical mixture of experts using global eigenspaces
    • R. Ebrahimpour, and F.M. Jafarlou View-independent face recognition with hierarchical mixture of experts using global eigenspaces J. Commun. Comput. 7 2010 1103 1107
    • (2010) J. Commun. Comput. , vol.7 , pp. 1103-1107
    • Ebrahimpour, R.1    Jafarlou, F.M.2
  • 14
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 15
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines J. Mach. Learn. 46 2002 389 422
    • (2002) J. Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 17
    • 0000856338 scopus 로고
    • The meta-pi network: Building distributed knowledge representations for robust multisource pattern recognition
    • J. Hampshire, and A. Waibel The meta-pi network: building distributed knowledge representations for robust multisource pattern recognition IEEE Trans. Pattern Anal. Mach. Intell. 14 1992 751 769
    • (1992) IEEE Trans. Pattern Anal. Mach. Intell. , vol.14 , pp. 751-769
    • Hampshire, J.1    Waibel, A.2
  • 18
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 1998 832 844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 832-844
    • Ho, T.1
  • 20
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the em algorithm
    • M. Jordan, and R. Jacobs Hierarchical mixtures of experts and the EM algorithm Neural Comput. 6 1994 181 214
    • (1994) Neural Comput. , vol.6 , pp. 181-214
    • Jordan, M.1    Jacobs, R.2
  • 21
    • 78149394246 scopus 로고    scopus 로고
    • New estimation and feature selection methods in mixture-of-experts models
    • A. Khalili New estimation and feature selection methods in mixture-of-experts models Can. J. Stat. 38 2010 519 539
    • (2010) Can. J. Stat. , vol.38 , pp. 519-539
    • Khalili, A.1
  • 22
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G. John Wrappers for feature subset selection Artif. Intell. 97 1997 273 324
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 24
    • 33847706511 scopus 로고    scopus 로고
    • Hybridizing mixtures of experts with support vector machines: Investigation into nonlinear dynamic systems identification
    • C. Lima, A. Coelho, and F. Von Zuben Hybridizing mixtures of experts with support vector machines: investigation into nonlinear dynamic systems identification Inform. Sci. 177 2007 2049 2074
    • (2007) Inform. Sci. , vol.177 , pp. 2049-2074
    • Lima, C.1    Coelho, A.2    Von Zuben, F.3
  • 25
    • 84897085208 scopus 로고    scopus 로고
    • Arizona State University: Feature Selection Datasets
    • H. Liu, Arizona State University: Feature Selection Datasets, 2012. < http://featureselection.asu.edu/datasets.php >.
    • (2012)
    • Liu, H.1
  • 27
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • D. MacKay Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks Netw.: Comput. Neural Syst. 6 1995 469 505
    • (1995) Netw.: Comput. Neural Syst. , vol.6 , pp. 469-505
    • Mackay, D.1
  • 28
    • 77958106713 scopus 로고    scopus 로고
    • Simultaneous feature selection and classification using kernel-penalized support vector machines
    • S. Maldonado, R. Weber, and J. Basak Simultaneous feature selection and classification using kernel-penalized support vector machines Inform. Sci. 181 2011 115 128
    • (2011) Inform. Sci. , vol.181 , pp. 115-128
    • Maldonado, S.1    Weber, R.2    Basak, J.3
  • 32
    • 33750996171 scopus 로고    scopus 로고
    • A novel mixture of experts model based on cooperative coevolution
    • M. Nguyen, H. Abbass, and R. McKay A novel mixture of experts model based on cooperative coevolution Neurocomputing 70 2006 155 163
    • (2006) Neurocomputing , vol.70 , pp. 155-163
    • Nguyen, M.1    Abbass, H.2    McKay, R.3
  • 33
    • 84858446140 scopus 로고    scopus 로고
    • Training regression ensembles by sequential target correction and resampling
    • R. Ñanculef, C. Valle, H. Allende, and C. Moraga Training regression ensembles by sequential target correction and resampling Inform. Sci. 195 2012 154 174
    • (2012) Inform. Sci. , vol.195 , pp. 154-174
    • Ñanculef, R.1    Valle, C.2    Allende, H.3    Moraga, C.4
  • 34
    • 34249029861 scopus 로고    scopus 로고
    • Penalized model-based clustering with application to variable selection
    • W. Pan, and X. Shen Penalized model-based clustering with application to variable selection J. Mach. Learn. Res. 8 2007 1145 1164
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1145-1164
    • Pan, W.1    Shen, X.2
  • 35
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard?
    • N. Pinto, D. Cox, and J. DiCarlo Why is real-world visual object recognition hard? PLoS Comput. Biol. 4 2008 151 156
    • (2008) PLoS Comput. Biol. , vol.4 , pp. 151-156
    • Pinto, N.1    Cox, D.2    Dicarlo, J.3
  • 39
    • 77953199976 scopus 로고    scopus 로고
    • Deformable model fitting with a mixture of local experts
    • J. Saragih, S. Lucey, and J. Cohn Deformable model fitting with a mixture of local experts Int. Conf. Comput. Vision 2009 2248 2255
    • (2009) Int. Conf. Comput. Vision , pp. 2248-2255
    • Saragih, J.1    Lucey, S.2    Cohn, J.3
  • 41
    • 22544475586 scopus 로고    scopus 로고
    • GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
    • A. Statnikov, I. Tsamardinos, Y. Dosbayev, and C. Aliferis GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data Int. J. Med. Inform. 74 2005 491 503
    • (2005) Int. J. Med. Inform. , vol.74 , pp. 491-503
    • Statnikov, A.1    Tsamardinos, I.2    Dosbayev, Y.3    Aliferis, C.4
  • 42
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani Regression shrinkage and selection via the Lasso J. Roy. Stat. Soc. (Ser. B) 58 1996 267 288
    • (1996) J. Roy. Stat. Soc. (Ser. B) , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 43
    • 0036718703 scopus 로고    scopus 로고
    • Mixture of experts classification using a hierarchical mixture model
    • M. Titsias, and A. Likas Mixture of experts classification using a hierarchical mixture model Neural Comput. 14 2002 2221 2244
    • (2002) Neural Comput. , vol.14 , pp. 2221-2244
    • Titsias, M.1    Likas, A.2
  • 44
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of block coordinate descent method for nondifferentiable maximization
    • P. Tseng Convergence of block coordinate descent method for nondifferentiable maximization J. Optim. Theory Appl. 109 2001 475 494
    • (2001) J. Optim. Theory Appl. , vol.109 , pp. 475-494
    • Tseng, P.1
  • 45
    • 84155172806 scopus 로고    scopus 로고
    • Eigenclassifiers for combining correlated classifiers
    • A. Ulas, O. Taner, and E. Alpaydin Eigenclassifiers for combining correlated classifiers Inform. Sci. 187 2012 109 120
    • (2012) Inform. Sci. , vol.187 , pp. 109-120
    • Ulas, A.1    Taner, O.2    Alpaydin, E.3
  • 47
    • 0033207482 scopus 로고    scopus 로고
    • Combining predictors: Comparison of five meta machine learning methods
    • J. Vogdrup Combining predictors: comparison of five meta machine learning methods Inform. Sci. 119 1999 91 105
    • (1999) Inform. Sci. , vol.119 , pp. 91-105
    • Vogdrup, J.1
  • 49
    • 84867860164 scopus 로고    scopus 로고
    • Multimodal graph-based reranking for web image search
    • M. Wang, H. Li, D. Tao, K. Lu, and X. Wu Multimodal graph-based reranking for web image search IEEE Trans. Image Process. 21 2012 4649 4661
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 4649-4661
    • Wang, M.1    Li, H.2    Tao, D.3    Lu, K.4    Wu, X.5
  • 50
    • 43749096785 scopus 로고    scopus 로고
    • Variable selection for model-based high dimensional clustering and its application to microarray data
    • S. Wang, and J. Zhu Variable selection for model-based high dimensional clustering and its application to microarray data Biometrics 64 2008 440 448
    • (2008) Biometrics , vol.64 , pp. 440-448
    • Wang, S.1    Zhu, J.2
  • 51
    • 78650979629 scopus 로고    scopus 로고
    • Heterogeneous feature selection by group Lasso with logistic regression
    • F. Wu, Y. Yuan, and Y. Zhuang Heterogeneous feature selection by group Lasso with logistic regression Int. Conf. Multimedia 2010 983 986
    • (2010) Int. Conf. Multimedia , pp. 983-986
    • Wu, F.1    Yuan, Y.2    Zhuang, Y.3
  • 52
    • 77958150674 scopus 로고    scopus 로고
    • A dynamic classifier ensemble selection approach for noise data
    • J. Xiao, C. He, X. Jiang, and D. Liu A dynamic classifier ensemble selection approach for noise data Inform. Sci. 180 2010 3402 3421
    • (2010) Inform. Sci. , vol.180 , pp. 3402-3421
    • Xiao, J.1    He, C.2    Jiang, X.3    Liu, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.