-
3
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
R. Battiti Using mutual information for selecting features in supervised neural net learning IEEE Trans. Neural Netw. 5 1994 537 550
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 537-550
-
-
Battiti, R.1
-
6
-
-
0004055894
-
-
Cambridge University Press Cambridge, United Kingdom
-
S. Boyd, and L. Vandenberghe Convex Optimization 2004 Cambridge University Press Cambridge, United Kingdom
-
(2004)
Convex Optimization
-
-
Boyd, S.1
Vandenberghe, L.2
-
8
-
-
0035478854
-
Random forests
-
L. Breiman Random forests Mach. Learn. 45 2001 5 32
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
11
-
-
84897089780
-
View-independent face recognition with hierarchical mixture of experts using global eigenspaces
-
R. Ebrahimpour, and F.M. Jafarlou View-independent face recognition with hierarchical mixture of experts using global eigenspaces J. Commun. Comput. 7 2010 1103 1107
-
(2010)
J. Commun. Comput.
, vol.7
, pp. 1103-1107
-
-
Ebrahimpour, R.1
Jafarlou, F.M.2
-
13
-
-
84860241968
-
Ensemble manifold regularization
-
B. Geng, D. Tao, T. Xu, L. Yang, and X. Hua Ensemble manifold regularization IEEE Trans. Pattern Anal. Mach. Intell. 34 2012 1227 1233
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, pp. 1227-1233
-
-
Geng, B.1
Tao, D.2
Xu, T.3
Yang, L.4
Hua, X.5
-
14
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
15
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines J. Mach. Learn. 46 2002 389 422
-
(2002)
J. Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
17
-
-
0000856338
-
The meta-pi network: Building distributed knowledge representations for robust multisource pattern recognition
-
J. Hampshire, and A. Waibel The meta-pi network: building distributed knowledge representations for robust multisource pattern recognition IEEE Trans. Pattern Anal. Mach. Intell. 14 1992 751 769
-
(1992)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.14
, pp. 751-769
-
-
Hampshire, J.1
Waibel, A.2
-
18
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 1998 832 844
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, pp. 832-844
-
-
Ho, T.1
-
20
-
-
0000262562
-
Hierarchical mixtures of experts and the em algorithm
-
M. Jordan, and R. Jacobs Hierarchical mixtures of experts and the EM algorithm Neural Comput. 6 1994 181 214
-
(1994)
Neural Comput.
, vol.6
, pp. 181-214
-
-
Jordan, M.1
Jacobs, R.2
-
21
-
-
78149394246
-
New estimation and feature selection methods in mixture-of-experts models
-
A. Khalili New estimation and feature selection methods in mixture-of-experts models Can. J. Stat. 38 2010 519 539
-
(2010)
Can. J. Stat.
, vol.38
, pp. 519-539
-
-
Khalili, A.1
-
22
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi, and G. John Wrappers for feature subset selection Artif. Intell. 97 1997 273 324
-
(1997)
Artif. Intell.
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
23
-
-
33750695296
-
Efficient L1 regularized logistic regression
-
S.I. Lee, H. Lee, P. Abbeel, A.Y. Ng, Efficient L1 regularized logistic regression, in: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI), 2006, pp. 401-408.
-
(2006)
Proceedings of the 21st National Conference on Artificial Intelligence (AAAI)
, pp. 401-408
-
-
Lee, S.I.1
Lee, H.2
Abbeel, P.3
Ng, A.Y.4
-
24
-
-
33847706511
-
Hybridizing mixtures of experts with support vector machines: Investigation into nonlinear dynamic systems identification
-
C. Lima, A. Coelho, and F. Von Zuben Hybridizing mixtures of experts with support vector machines: investigation into nonlinear dynamic systems identification Inform. Sci. 177 2007 2049 2074
-
(2007)
Inform. Sci.
, vol.177
, pp. 2049-2074
-
-
Lima, C.1
Coelho, A.2
Von Zuben, F.3
-
25
-
-
84897085208
-
-
Arizona State University: Feature Selection Datasets
-
H. Liu, Arizona State University: Feature Selection Datasets, 2012. < http://featureselection.asu.edu/datasets.php >.
-
(2012)
-
-
Liu, H.1
-
27
-
-
0001441372
-
Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
-
D. MacKay Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks Netw.: Comput. Neural Syst. 6 1995 469 505
-
(1995)
Netw.: Comput. Neural Syst.
, vol.6
, pp. 469-505
-
-
Mackay, D.1
-
28
-
-
77958106713
-
Simultaneous feature selection and classification using kernel-penalized support vector machines
-
S. Maldonado, R. Weber, and J. Basak Simultaneous feature selection and classification using kernel-penalized support vector machines Inform. Sci. 181 2011 115 128
-
(2011)
Inform. Sci.
, vol.181
, pp. 115-128
-
-
Maldonado, S.1
Weber, R.2
Basak, J.3
-
32
-
-
33750996171
-
A novel mixture of experts model based on cooperative coevolution
-
M. Nguyen, H. Abbass, and R. McKay A novel mixture of experts model based on cooperative coevolution Neurocomputing 70 2006 155 163
-
(2006)
Neurocomputing
, vol.70
, pp. 155-163
-
-
Nguyen, M.1
Abbass, H.2
McKay, R.3
-
33
-
-
84858446140
-
Training regression ensembles by sequential target correction and resampling
-
R. Ñanculef, C. Valle, H. Allende, and C. Moraga Training regression ensembles by sequential target correction and resampling Inform. Sci. 195 2012 154 174
-
(2012)
Inform. Sci.
, vol.195
, pp. 154-174
-
-
Ñanculef, R.1
Valle, C.2
Allende, H.3
Moraga, C.4
-
34
-
-
34249029861
-
Penalized model-based clustering with application to variable selection
-
W. Pan, and X. Shen Penalized model-based clustering with application to variable selection J. Mach. Learn. Res. 8 2007 1145 1164
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 1145-1164
-
-
Pan, W.1
Shen, X.2
-
35
-
-
38949193299
-
Why is real-world visual object recognition hard?
-
N. Pinto, D. Cox, and J. DiCarlo Why is real-world visual object recognition hard? PLoS Comput. Biol. 4 2008 151 156
-
(2008)
PLoS Comput. Biol.
, vol.4
, pp. 151-156
-
-
Pinto, N.1
Cox, D.2
Dicarlo, J.3
-
39
-
-
77953199976
-
Deformable model fitting with a mixture of local experts
-
J. Saragih, S. Lucey, and J. Cohn Deformable model fitting with a mixture of local experts Int. Conf. Comput. Vision 2009 2248 2255
-
(2009)
Int. Conf. Comput. Vision
, pp. 2248-2255
-
-
Saragih, J.1
Lucey, S.2
Cohn, J.3
-
41
-
-
22544475586
-
GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
-
A. Statnikov, I. Tsamardinos, Y. Dosbayev, and C. Aliferis GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data Int. J. Med. Inform. 74 2005 491 503
-
(2005)
Int. J. Med. Inform.
, vol.74
, pp. 491-503
-
-
Statnikov, A.1
Tsamardinos, I.2
Dosbayev, Y.3
Aliferis, C.4
-
42
-
-
0001287271
-
Regression shrinkage and selection via the Lasso
-
R. Tibshirani Regression shrinkage and selection via the Lasso J. Roy. Stat. Soc. (Ser. B) 58 1996 267 288
-
(1996)
J. Roy. Stat. Soc. (Ser. B)
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
43
-
-
0036718703
-
Mixture of experts classification using a hierarchical mixture model
-
M. Titsias, and A. Likas Mixture of experts classification using a hierarchical mixture model Neural Comput. 14 2002 2221 2244
-
(2002)
Neural Comput.
, vol.14
, pp. 2221-2244
-
-
Titsias, M.1
Likas, A.2
-
44
-
-
0035533631
-
Convergence of block coordinate descent method for nondifferentiable maximization
-
P. Tseng Convergence of block coordinate descent method for nondifferentiable maximization J. Optim. Theory Appl. 109 2001 475 494
-
(2001)
J. Optim. Theory Appl.
, vol.109
, pp. 475-494
-
-
Tseng, P.1
-
45
-
-
84155172806
-
Eigenclassifiers for combining correlated classifiers
-
A. Ulas, O. Taner, and E. Alpaydin Eigenclassifiers for combining correlated classifiers Inform. Sci. 187 2012 109 120
-
(2012)
Inform. Sci.
, vol.187
, pp. 109-120
-
-
Ulas, A.1
Taner, O.2
Alpaydin, E.3
-
47
-
-
0033207482
-
Combining predictors: Comparison of five meta machine learning methods
-
J. Vogdrup Combining predictors: comparison of five meta machine learning methods Inform. Sci. 119 1999 91 105
-
(1999)
Inform. Sci.
, vol.119
, pp. 91-105
-
-
Vogdrup, J.1
-
48
-
-
67249090373
-
Unified video annotation via multigraph learning
-
M. Wang, X. Hua, R. Hong, J. Tang, J. Guo-Jung, and Y. Song Unified video annotation via multigraph learning IEEE Trans. Circ. Syst. Video Technol. 19 2009 733 746
-
(2009)
IEEE Trans. Circ. Syst. Video Technol.
, vol.19
, pp. 733-746
-
-
Wang, M.1
Hua, X.2
Hong, R.3
Tang, J.4
Guo-Jung, J.5
Song, Y.6
-
49
-
-
84867860164
-
Multimodal graph-based reranking for web image search
-
M. Wang, H. Li, D. Tao, K. Lu, and X. Wu Multimodal graph-based reranking for web image search IEEE Trans. Image Process. 21 2012 4649 4661
-
(2012)
IEEE Trans. Image Process.
, vol.21
, pp. 4649-4661
-
-
Wang, M.1
Li, H.2
Tao, D.3
Lu, K.4
Wu, X.5
-
50
-
-
43749096785
-
Variable selection for model-based high dimensional clustering and its application to microarray data
-
S. Wang, and J. Zhu Variable selection for model-based high dimensional clustering and its application to microarray data Biometrics 64 2008 440 448
-
(2008)
Biometrics
, vol.64
, pp. 440-448
-
-
Wang, S.1
Zhu, J.2
-
51
-
-
78650979629
-
Heterogeneous feature selection by group Lasso with logistic regression
-
F. Wu, Y. Yuan, and Y. Zhuang Heterogeneous feature selection by group Lasso with logistic regression Int. Conf. Multimedia 2010 983 986
-
(2010)
Int. Conf. Multimedia
, pp. 983-986
-
-
Wu, F.1
Yuan, Y.2
Zhuang, Y.3
-
52
-
-
77958150674
-
A dynamic classifier ensemble selection approach for noise data
-
J. Xiao, C. He, X. Jiang, and D. Liu A dynamic classifier ensemble selection approach for noise data Inform. Sci. 180 2010 3402 3421
-
(2010)
Inform. Sci.
, vol.180
, pp. 3402-3421
-
-
Xiao, J.1
He, C.2
Jiang, X.3
Liu, D.4
-
53
-
-
85140116568
-
An alternative model for mixtures of experts
-
L. Xu, M. Jordan, G. Hinton, An alternative model for mixtures of experts, in: Advances in Neural Information Processing Systems, 1994, pp. 633-640.
-
(1994)
Advances in Neural Information Processing Systems
, pp. 633-640
-
-
Xu, L.1
Jordan, M.2
Hinton, G.3
-
54
-
-
82055177133
-
Assemble new object detector with few examples
-
K. Yang, M. Wang, X. Hua, S. Yan, and H. Zhang Assemble new object detector with few examples IEEE Trans. Image Process. 20 2011 3341 3349
-
(2011)
IEEE Trans. Image Process.
, vol.20
, pp. 3341-3349
-
-
Yang, K.1
Wang, M.2
Hua, X.3
Yan, S.4
Zhang, H.5
-
55
-
-
0002345368
-
Winner-take-all mechanisms
-
M.A. Arbib, MIT Press Cambridge, MA, USA
-
A. Yuille, and D. Geiger Winner-take-all mechanisms M.A. Arbib, The Handbook of Brain Theory and Neural Networks 1998 MIT Press Cambridge, MA, USA 1056
-
(1998)
The Handbook of Brain Theory and Neural Networks
, pp. 1056
-
-
Yuille, A.1
Geiger, D.2
|