-
2
-
-
44649111202
-
Locality sensitive semi-supervised feature selection
-
J. Zhao, K. Lu, and X. He, "Locality sensitive semi-supervised feature selection," Neurocomputing, vol. 71, 2008, pp. 1842-1849.
-
(2008)
Neurocomputing
, vol.71
, pp. 1842-1849
-
-
Zhao, J.1
Lu, K.2
He, X.3
-
3
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R. Fisher, "The use of multiple measurements in taxonomic problems," Annals Eugen., vol. 7, 1936, pp. 179-188.
-
(1936)
Annals Eugen.
, vol.7
, pp. 179-188
-
-
Fisher, R.1
-
5
-
-
0031078007
-
Feature selection: Evaluation, application, and small sample performance
-
A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," Proc. IEEE TPAMI, 1997, pp. 153-158.
-
(1997)
Proc. IEEE TPAMI
, pp. 153-158
-
-
Jain, A.1
Zongker, D.2
-
6
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection ," JMLR, vol. 3, 2003, pp. 1157-1182.
-
(2003)
JMLR
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
7
-
-
26444454606
-
Feature selection for unsupervised learning
-
J. G. Dy, C. E. Brodley, and S. Wrobel, " Feature selection for unsupervised learning ," JMLR, vol. 5, 2004, pp. 845-889.
-
(2004)
JMLR
, vol.5
, pp. 845-889
-
-
Dy, J.G.1
Brodley, C.E.2
Wrobel, S.3
-
8
-
-
0141990695
-
Theoretical and empirical analysis of relieff and rrelieff
-
oct
-
M. Šikonja and I. Kononenko, "Theoretical and Empirical Analysis of ReliefF and RReliefF," Machine Learning, vol. 53, p. 23-69, oct. 2003.
-
(2003)
Machine Learning
, vol.53
, pp. 23-69
-
-
Šikonja, M.1
Kononenko, I.2
-
9
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," Proc. ICML, 2007, p. 1151-1157.
-
(2007)
Proc. ICML
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
-
11
-
-
84864039505
-
Laplacian score for feature selection
-
X. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection,", NIPS 17, 2005.
-
(2005)
NIPS
, vol.17
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
13
-
-
34547989065
-
Semi-supervised feature selection via spectral analysis
-
Z. Zhao and H. Liu, "Semi-supervised Feature Selection via Spectral Analysis ," Proc. SIAM/SDM, 2007.
-
(2007)
Proc. SIAM/SDM
-
-
Zhao, Z.1
Liu, H.2
-
15
-
-
85042972591
-
-
Chapman and Hall/CRC
-
S. Basu, I. Davidson, and K. Wagstaff, Constrained Clustering: Advances in Algorithms, Theory and Applications, Chapman and Hall/CRC, 2008.
-
(2008)
Constrained Clustering: Advances in Algorithms, Theory and Applications
-
-
Basu, S.1
Davidson, I.2
Wagstaff, K.3
-
16
-
-
85133386144
-
Distance metric learning, with application to clustering with side-information
-
E. Xing, A. Ng, M. Jordan, and S. Russell, "Distance Metric Learning, with Application to Clustering with Side-information," in NIPS 15, 2002, pp. 505-512.
-
(2002)
NIPS
, vol.15
, pp. 505-512
-
-
Xing, E.1
Ng, A.2
Jordan, M.3
Russell, S.4
-
17
-
-
21844457672
-
Learning a mahalanobis metric from equivalence constraints
-
A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, "Learning a Mahalanobis Metric from Equivalence Constraints," Journal of Machine Learning Research, vol. 6, 2005, pp. 937-965.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 937-965
-
-
Bar-Hillel, A.1
Hertz, T.2
Shental, N.3
Weinshall, D.4
-
19
-
-
38349093039
-
Constraint Score: A new filter method for feature selection with pairwise constraints
-
D. Zhang, S. Chen, and Z-H. Zhou, " Constraint Score: A new filter method for feature selection with pairwise constraints," Pattern Recognition, vol. 41, 2008, pp. 1440-1451.
-
(2008)
Pattern Recognition
, vol.41
, pp. 1440-1451
-
-
Zhang, D.1
Chen, S.2
Zhou, Z.-H.3
-
20
-
-
78751645408
-
Constraint scores for semi-supervised feature selection: A comparative study
-
M. Kalakech, P. Biela, L. Macaire, and D. Hamad, "Constraint scores for semi-supervised feature selection: A comparative study," Pattern Recognition Letters, vol. 32, 2011, pp. 656-665.
-
(2011)
Pattern Recognition Letters
, vol.32
, pp. 656-665
-
-
Kalakech, M.1
Biela, P.2
MacAire, L.3
Hamad, D.4
-
21
-
-
33750288047
-
Measuring constraintset utility for partitional clustering algorithms
-
I. Davidson, K. L. Wagstaff, and S. Basu, "Measuring constraintset utility for partitional clustering algorithms," Proc. ECML/PKDD, 2006, pp. 115-126.
-
(2006)
Proc. ECML/PKDD
, pp. 115-126
-
-
Davidson, I.1
Wagstaff, K.L.2
Basu, S.3
-
23
-
-
0013326060
-
Feature selection for classification
-
M. Dash and H. Liu, "Feature Selection for Classification," intelligent data analysis, vol. 1, 1997, pp. 131-156.
-
(1997)
Intelligent Data Analysis
, vol.1
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
24
-
-
0042341570
-
Clustering and its validation in a symbolic framework
-
Oct.
-
K. Mali, "Clustering and its validation in a symbolic framework," Pattern Recognition Letters, vol. 24, pp. 2367-2376, oct. 2003.
-
(2003)
Pattern Recognition Letters
, vol.24
, pp. 2367-2376
-
-
Mali, K.1
-
25
-
-
78649934709
-
-
University of California, Irvine, School of Information and Computer Sciences
-
A. Frank and A. Asuncion, UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences, 2010.
-
(2010)
UCI Machine Learning Repository
-
-
Frank, A.1
Asuncion, A.2
-
26
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub et al., "Molecular classification of cancer: class discovery and class prediction by gene expression monitoring," Science, vol. 286 (5439), 1999, pp. 531-537.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
|