메뉴 건너뛰기




Volumn 2, Issue , 2008, Pages 30-34

A survey of semi-supervised learning methods

Author keywords

Classifier; Data; Expectation maximization; Labelled; Learning; Methods; Semi Supervised; Test; Training; Unlabelled

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLASSIFIERS; COMPUTATION THEORY; LEARNING ALGORITHMS; MACHINE LEARNING; MAXIMUM PRINCIPLE; PERSONNEL TRAINING; TESTING;

EID: 60349117789     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/cis.2008.204     Document Type: Conference Paper
Times cited : (110)

References (23)
  • 2
    • 33947227481 scopus 로고    scopus 로고
    • Semi-Supervised Learning Literature Survey
    • University of Wisconsin, Madison, Dec
    • Xiaojin Zhu, "Semi-Supervised Learning Literature Survey", Computer Sciences TR 1530, University of Wisconsin - Madison, Dec 2007
    • (2007) Computer Sciences TR , pp. 1530
    • Zhu, X.1
  • 3
    • 77949617286 scopus 로고    scopus 로고
    • Pedro J. Moreno, Shivani Agarwal, An Experimental Study of EM-Based Algorithms for Semi-Supervised Learning in Audio Classification, Proceedings of the ICML-2003 Workshop on The Continuum from Labelled to Unlabeled Data, Washington DC, 2003.
    • Pedro J. Moreno, Shivani Agarwal, "An Experimental Study of EM-Based Algorithms for Semi-Supervised Learning in Audio Classification", Proceedings of the ICML-2003 Workshop on The Continuum from Labelled to Unlabeled Data, Washington DC, 2003.
  • 4
    • 36849045249 scopus 로고    scopus 로고
    • Gregory Druck, Chris Pal, Xiaojin Zhu, Andrew McCallum, Semi-Supervised Classification with Hybrid Generative/Discriminative Methods, KDD'07, August 12-15, 2007, San Jose, California, USA.
    • Gregory Druck, Chris Pal, Xiaojin Zhu, Andrew McCallum, "Semi-Supervised Classification with Hybrid Generative/Discriminative Methods", KDD'07, August 12-15, 2007, San Jose, California, USA.
  • 5
    • 33744955193 scopus 로고    scopus 로고
    • Semi-Supervised Learning with Graphs
    • Doctoral Thesis, Carnegie Mellon University, May
    • Xiaojin Zhu," Semi-Supervised Learning with Graphs", Doctoral Thesis, Carnegie Mellon University, May 2005.
    • (2005)
    • Zhu, X.1
  • 7
    • 77949598569 scopus 로고    scopus 로고
    • Xiaofei He, Incremental Semi-Supervised Subspace Learning for Image Retrieval, ACM MM'04.
    • Xiaofei He, "Incremental Semi-Supervised Subspace Learning for Image Retrieval", ACM MM'04.
  • 8
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Kluwer Academic Publishers, Boston
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. "Text classification from labeled and unlabeled documents using EM", Machine Learning, 1-34, Kluwer Academic Publishers, Boston, 2000.
    • (2000) Machine Learning , pp. 1-34
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 10
    • 77949596332 scopus 로고    scopus 로고
    • Xiaojin Zhu, Zoubin Ghahramani, Learning from Labeled ans Unlabeled Data with Label Propogation, m Field, School of Computer Science, Carnegie Mellon University, USA, June 2002.
    • Xiaojin Zhu, Zoubin Ghahramani, "Learning from Labeled ans Unlabeled Data with Label Propogation", m Field", School of Computer Science, Carnegie Mellon University, USA, June 2002.
  • 15
    • 9244243116 scopus 로고    scopus 로고
    • Semi Supervised Learning of Classifiers: Theory, Algorithms, and Their Application to Human-Computer Interaction
    • December
    • Ira Cohen, Fabio G. Cozman, Nicu Sebe, Marcelo C. Cirelo, Thomas S. Huang, "Semi Supervised Learning of Classifiers: Theory, Algorithms, and Their Application to Human-Computer Interaction", IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 26, No. 12, December 2004, pp 1553-1567.
    • (2004) IEEE Transactions On Pattern Analysis And Machine Intelligence , vol.26 , Issue.12 , pp. 1553-1567
    • Cohen, I.1    Cozman, F.G.2    Sebe, N.3    Cirelo, M.C.4    Huang, T.S.5
  • 19
    • 77949649778 scopus 로고    scopus 로고
    • Rie Kubota, Ando, Tong Zang, A High-Performance Semi-Supervised Learning Method for Text Chunking, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.
    • Rie Kubota, Ando, Tong Zang, "A High-Performance Semi-Supervised Learning Method for Text Chunking", IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.
  • 20
    • 77949636107 scopus 로고    scopus 로고
    • Christopher M. Bishop, Julia Lasserre, Generative or Discriminative? Getting the Best of Both Worlds, BAYESIAN STATISTICS 8, pp. 3-24., Oxford University Press, 2007
    • Christopher M. Bishop, Julia Lasserre, Generative or Discriminative? Getting the Best of Both Worlds", BAYESIAN STATISTICS 8, pp. 3-24., Oxford University Press, 2007
  • 21
    • 0036989516 scopus 로고    scopus 로고
    • The Use of Unlabeled Data to Improve Supervised Learning for Text Summarization
    • August 11-15, Tampere, Finland
    • Massih-Reza Amini, Patrick Gallinari, "The Use of Unlabeled Data to Improve Supervised Learning for Text Summarization", SIGIR '02, August 11-15, 2002, Tampere, Finland.
    • (2002) SIGIR '02
    • Amini, M.-R.1    Gallinari, P.2
  • 23
    • 34047097838 scopus 로고    scopus 로고
    • Semi-supervised Clustering: Probabilistic Models, Algorithms and Experiments
    • Doctoral Thesis, University of Texas, Austin, August
    • Sugata Basu, "Semi-supervised Clustering: Probabilistic Models, Algorithms and Experiments", Doctoral Thesis, University of Texas, Austin, August 2005
    • (2005)
    • Basu, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.