-
1
-
-
31844446681
-
Predictive low-rank decomposition for kernel methods
-
Bonn, Germany, Aug.
-
F. Bach and M. Jordan, "Predictive low-rank decomposition for kernel methods," in Proc. 22nd Int. Conf. Mach. Learn., Bonn, Germany, Aug. 2005, pp. 33-40.
-
(2005)
Proc. 22nd Int. Conf. Mach. Learn.
, pp. 33-40
-
-
Bach, F.1
Jordan, M.2
-
2
-
-
84898963451
-
Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data
-
S. Baluja, "Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data," in Proc. Adv. NIPS, vol. 11. 1999, pp. 854-860.
-
(1999)
Proc. Adv. NIPS
, vol.11
, pp. 854-860
-
-
Baluja, S.1
-
3
-
-
84880203756
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering," in Proc. Adv. NIPS, vol. 14. 2002, pp. 585-591.
-
(2002)
Proc. Adv. NIPS
, vol.14
, pp. 585-591
-
-
Belkin, M.1
Niyogi, P.2
-
4
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, no. 11, pp. 2399-2434, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, Issue.11
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
5
-
-
77956501439
-
Does unlabeled data provably help? Worst-case analysis of the sample complexity of semi-supervised learning
-
S. Ben-David, T. Lu, and D. Pal, "Does unlabeled data provably help? Worst-case analysis of the sample complexity of semi-supervised learning," in Proc. 21st Annu. Conf. Learn. Theory, 2008, pp. 33-44.
-
(2008)
Proc. 21st Annu. Conf. Learn. Theory
, pp. 33-44
-
-
Ben-David, S.1
Lu, T.2
Pal, D.3
-
6
-
-
0010805362
-
Learning from labeled and unlabeled data using graph mincuts
-
San Francisco, CA, USA
-
A. Blum and S. Chawla, "Learning from labeled and unlabeled data using graph mincuts," in Proc. 18th Int. Conf. Mach. Learn., San Francisco, CA, USA, 2001, pp. 19-26.
-
(2001)
Proc. 18th Int. Conf. Mach. Learn.
, pp. 19-26
-
-
Blum, A.1
Chawla, S.2
-
7
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
New York, NY, USA, Jul.
-
A. Blum and T. Mitchell, "Combining labeled and unlabeled data with co-training," in Proc. 11th Annu. Conf. Comput. Learn. Theory, New York, NY, USA, Jul. 1998, pp. 209-214.
-
(1998)
Proc. 11th Annu. Conf. Comput. Learn. Theory
, pp. 209-214
-
-
Blum, A.1
Mitchell, T.2
-
8
-
-
39049145967
-
Semi-supervised graph-based hyperspectral image classification
-
Oct.
-
G. Camps-Valls, T. V. B. Marsheva, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens. E, vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
-
(2007)
IEEe Trans. Geosci. Remote Sens. e
, vol.45
, Issue.10
, pp. 3044-3054
-
-
Camps-Valls, G.1
Marsheva, T.V.B.2
Zhou, D.3
-
9
-
-
0029195475
-
On the exponential value of labeled samples
-
V. Castelli and T. Cover, "On the exponential value of labeled samples," Pattern Recognit. Lett., vol. 16, no. 1, pp. 105-111, 1995.
-
(1995)
Pattern Recognit. Lett.
, vol.16
, Issue.1
, pp. 105-111
-
-
Castelli, V.1
Cover, T.2
-
12
-
-
80053442434
-
The importance of encoding versus training with sparse coding and vector quantization
-
Bellevue, WA, USA Jun.
-
A. Coates and A. Y. Ng, "The importance of encoding versus training with sparse coding and vector quantization," in Proc. 28th Int. Conf. Mach. Learn., Bellevue, WA, USA, Jun. 2011, pp. 921-928.
-
(2011)
Proc. 28th Int. Conf. Mach. Learn.
, pp. 921-928
-
-
Coates, A.1
Ng, A.Y.2
-
13
-
-
84862619225
-
Efficient non-parametric function induction in semi-supervised learning
-
O. Delalleau, Y. Bengio, and N. L. Roux, "Efficient non-parametric function induction in semi-supervised learning," in Proc. 10th Int. Workshop Artif. Intell. Statist., 2005, pp. 96-103.
-
(2005)
Proc. 10th Int. Workshop Artif. Intell. Statist.
, pp. 96-103
-
-
Delalleau, O.1
Bengio, Y.2
Roux, N.L.3
-
14
-
-
33751075906
-
Fast Monte Carlo algorithms for matrices II: Computing a low rank approximation to a matrix
-
P. Drineas, R. Kannan, and M. Mahoney, "Fast Monte Carlo algorithms for matrices II: Computing a low rank approximation to a matrix," SIAM J. Comput., vol. 36, no. 1, pp. 158-183, 2006.
-
(2006)
SIAM J. Comput.
, vol.36
, Issue.1
, pp. 158-183
-
-
Drineas, P.1
Kannan, R.2
Mahoney, M.3
-
15
-
-
29244453931
-
On the Nyström method for approximating a Gram matrix for improved kernel-based learning
-
Dec.
-
P. Drineas and M. W. Mahoney, "On the Nyström method for approximating a Gram matrix for improved kernel-based learning," J. Mach. Learn. Res., vol. 6, pp. 2153-2175, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 2153-2175
-
-
Drineas, P.1
Mahoney, M.W.2
-
16
-
-
0742286179
-
Spectral grouping using the Nyström method
-
Feb.
-
C. Fowlkes, S. Belongie, F. Chung, and J. Malik, "Spectral grouping using the Nyström method," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 214-225, Feb. 2004.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.26
, Issue.2
, pp. 214-225
-
-
Fowlkes, C.1
Belongie, S.2
Chung, F.3
Malik, J.4
-
17
-
-
0032308232
-
Fast Monte-Carlo algorithms for finding low-rank approximations
-
Palo Alto, CA, USA
-
A. Frieze, R. Kannan, and S. Vempala, "Fast Monte-Carlo algorithms for finding low-rank approximations," in Proc. 39th Annu. Symp. Found. Comput. Sci., Palo Alto, CA, USA, 1998, pp. 370-378.
-
(1998)
Proc. 39th Annu. Symp. Found. Comput. Sci.
, pp. 370-378
-
-
Frieze, A.1
Kannan, R.2
Vempala, S.3
-
18
-
-
84898983549
-
Hierarchical clustering of a mixture model
-
J. Goldberger and S. Roweis, "Hierarchical clustering of a mixture model," in Proc. Adv. NIPS, vol. 17. 2005, pp. 505-512.
-
(2005)
Proc. Adv. NIPS
, vol.17
, pp. 505-512
-
-
Goldberger, J.1
Roweis, S.2
-
19
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
San Francisco, CA, USA
-
T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th Int. Conf. Mach. Learn., San Francisco, CA, USA, 1999, pp. 200-209.
-
(1999)
Proc. 16th Int. Conf. Mach. Learn.
, pp. 200-209
-
-
Joachims, T.1
-
20
-
-
14344255620
-
Kernel conditional random fields: Representation and clique selection
-
Banff, AB, Canada, Jul.
-
J. Lafferty, X. Zhu, and Y. Liu, "Kernel conditional random fields: Representation and clique selection," in Proc. 21st Int. Conf. Mach. Learn., Banff, AB, Canada, Jul. 2004, p. 64.
-
(2004)
Proc. 21st Int. Conf. Mach. Learn
, pp. 64
-
-
Lafferty, J.1
Zhu, X.2
Liu, Y.3
-
21
-
-
84864032258
-
Learning to model spatial dependency: Semi-supervised discriminative random fields
-
Cambridge, MA, USA
-
C.-H. Lee, S. Wang, F. Jiao, D. Schuurmans, and D. Greiner, "Learning to model spatial dependency: Semi-supervised discriminative random fields," in Proc. Adv. NIPS, vol. 19. Cambridge, MA, USA, 2007.
-
(2007)
Proc. Adv. NIPS
, vol.19
-
-
Lee, C.-H.1
Wang, S.2
Jiao, F.3
Schuurmans, D.4
Greiner, D.5
-
22
-
-
84876103265
-
Laplacian embedded regression for scalable manifold regularization
-
Jun.
-
L. Chen, I. W. Tsang, and D. Xu, "Laplacian embedded regression for scalable manifold regularization," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 6, pp. 902-915, Jun. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.6
, pp. 902-915
-
-
Chen, L.1
Tsang, I.W.2
Xu, D.3
-
23
-
-
77956555216
-
Large graph construction for scalable semi-supervised learning
-
Haifa, Israel Jun.
-
W. Liu, J. He, and S. F. Chang, "Large graph construction for scalable semi-supervised learning," in Proc. 27th Int. Conf. Mach. Learn., Haifa, Israel, Jun. 2010, pp. 679-686.
-
(2010)
Proc. 27th Int. Conf. Mach. Learn.
, pp. 679-686
-
-
Liu, W.1
He, J.2
Chang, S.F.3
-
24
-
-
79955855934
-
Laplacian support vector machines trained in the primal
-
S. Melacci and M. Belkin, "Laplacian support vector machines trained in the primal," J. Mach. Learn. Res., vol. 12, no. 3, pp. 1149-1184, 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, Issue.3
, pp. 1149-1184
-
-
Melacci, S.1
Belkin, M.2
-
25
-
-
0041875229
-
On spectral clustering: Analysis and an algorithm
-
A. Y. Ng, M. I. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm," in Proc. Adv. NIPS, vol. 14. 2001, pp. 849-856.
-
(2001)
Proc. Adv. NIPS
, vol.14
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
26
-
-
84867796463
-
Semi-supervised dimension reduction using trace ratio criterion
-
Mar.
-
Y. Huang, D. Xu, and F. Nie, "Semi-supervised dimension reduction using trace ratio criterion," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 3, pp. 519-526, Mar. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.3
, pp. 519-526
-
-
Huang, Y.1
Xu, D.2
Nie, F.3
-
27
-
-
0033886806
-
Text classification from labeled and unlabeled documents using em
-
K. Nigam, A. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Mach. Learn., vol. 39, nos. 2-3, pp. 103-134, 2000.
-
(2000)
Mach. Learn.
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.2
Thrun, S.3
Mitchell, T.4
-
28
-
-
34547675831
-
Generalization error bounds in semi-supervised classification under the cluster assumption
-
Dec.
-
P. Rigollet, "Generalization error bounds in semi-supervised classification under the cluster assumption," J. Mach. Learn. Res., vol. 8, pp. 1369-1392, Dec. 2007.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 1369-1392
-
-
Rigollet, P.1
-
29
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
30
-
-
0003621102
-
An introduction to the conjugate gradient method without the agonizing pain
-
Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.
-
J. R. Shewchuk, "An introduction to the conjugate gradient method without the agonizing pain," School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep., 1994.
-
(1994)
School Comput. Sci.
-
-
Shewchuk, J.R.1
-
31
-
-
0034244751
-
Normalized cuts and image segmentation
-
Aug.
-
J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
32
-
-
84863338319
-
Unlabeled data: Now it helps, now it doesn't
-
A. Singh, R. D. Nowak, and X. Zhu, "Unlabeled data: Now it helps, now it doesn't," in Proc. Adv. NIPS, 2008, pp. 1513-1520.
-
(2008)
Proc. Adv. NIPS
, pp. 1513-1520
-
-
Singh, A.1
Nowak, R.D.2
Zhu, X.3
-
33
-
-
84876888732
-
Semisupervised classification with cluster regularization
-
Nov.
-
R. G. F. Soares, H. Chen, and X. Yao, "Semisupervised classification with cluster regularization," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 11, pp. 1779-1792, Nov. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.11
, pp. 1779-1792
-
-
Soares, R.G.F.1
Chen, H.2
Yao, X.3
-
34
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
35
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Statist., Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
-
(1996)
J. Roy. Statist., Soc. B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
36
-
-
21844440579
-
Core vector machines: Fast SVM training on very large data sets
-
Dec.
-
I. W. Tsang, J. T. Kwok, and P.-M. Cheung, "Core vector machines: Fast SVM training on very large data sets," J. Mach. Learn. Res., vol. 6, pp. 363-392, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 363-392
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.-M.3
-
37
-
-
84899010839
-
Using the Nyström method to speed up kernel machines
-
C. Williams and M. Seeger, "Using the Nyström method to speed up kernel machines," in Proc. Adv. NIPS, vol. 13. 2001, pp. 682-688.
-
(2001)
Proc. Adv. NIPS
, vol.13
, pp. 682-688
-
-
Williams, C.1
Seeger, M.2
-
38
-
-
77954565155
-
Discriminative semisupervised feature selection via manifold regularization
-
Jul.
-
Z. Xu, I. King, M. R.-T. Lyu, and R. Jin, "Discriminative semisupervised feature selection via manifold regularization," IEEE Trans. Neural Netw., vol. 21, no. 7, pp. 1033-1047, Jul. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.7
, pp. 1033-1047
-
-
Xu, Z.1
King, I.2
Lyu, M.R.-T.3
Jin, R.4
-
39
-
-
85141919230
-
Unsupervised word-sense disambiguation rivaling supervised methods
-
Stroudsburg, PA, USA
-
D. Yarowsky, "Unsupervised word-sense disambiguation rivaling supervised methods," in Proc. 33rd Annu. Meet. Assoc. Comput. Linguistics, Stroudsburg, PA, USA, 1995, pp. 189-196.
-
(1995)
Proc. 33rd Annu. Meet. Assoc. Comput. Linguistics
, pp. 189-196
-
-
Yarowsky, D.1
-
40
-
-
56449087564
-
Improved Nyström low rank approximation and error analysis
-
Helsinki, Finland, Jun.
-
K. Zhang and J. T. Kwok, "Improved Nyström low rank approximation and error analysis," in Proc. 25th Int. Conf. Mach. Learn., Helsinki, Finland, Jun. 2008, pp. 1232-1239.
-
(2008)
Proc. 25th Int. Conf. Mach. Learn.
, pp. 1232-1239
-
-
Zhang, K.1
Kwok, J.T.2
-
41
-
-
77957779140
-
Clustered Nyström method for large scale manifold learning and dimension reduction
-
Oct.
-
K. Zhang and J. T. Kwok, "Clustered Nyström method for large scale manifold learning and dimension reduction," IEEE Trans. Neural Netw., vol. 21, no. 10, pp. 1576-1587, Oct. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.10
, pp. 1576-1587
-
-
Zhang, K.1
Kwok, J.T.2
-
42
-
-
70049106797
-
Prototype vector machine for large scale semi-supervised learning
-
Montreal, QC, Canada, Jun.
-
K. Zhang, J. T. Kwok, and B. Parvin, "Prototype vector machine for large scale semi-supervised learning," in Proc. 26th Int. Conf. Mach. Learn., Montreal, QC, Canada, Jun. 2009, pp. 1233-1240.
-
(2009)
Proc. 26th Int. Conf. Mach. Learn.
, pp. 1233-1240
-
-
Zhang, K.1
Kwok, J.T.2
Parvin, B.3
-
43
-
-
84879867381
-
Scaling up kernel SVM on limited resources: A low-rank linearization approach
-
K. Zhang, L. Lan, Z. Wang, and F. Moerchen, "Scaling up kernel SVM on limited resources: A low-rank linearization approach," in Proc. Int. Conf. Artif. Intell. Statist., 2012, pp. 1425-1434.
-
(2012)
Proc. Int. Conf. Artif. Intell. Statist.
, pp. 1425-1434
-
-
Zhang, K.1
Lan, L.2
Wang, Z.3
Moerchen, F.4
-
44
-
-
84893789401
-
Covariate shift in Hilbert space: A solution via surrogate kernels
-
Atlanta, GA, USA Jun.
-
K. Zhang, V. Zheng, Q. Wang, J. Kwok, Q. Yang, and I. Marsic, "Covariate shift in Hilbert space: A solution via surrogate kernels," in Proc. 30th Int. Conf. Mach. Learn., Atlanta, GA, USA, Jun. 2013, pp. 388-395.
-
(2013)
Proc. 30th Int. Conf. Mach. Learn.
, pp. 388-395
-
-
Zhang, K.1
Zheng, V.2
Wang, Q.3
Kwok, J.4
Yang, Q.5
Marsic, I.6
-
45
-
-
22944492898
-
Learning with local and global consistency
-
D. Zhou, O. Bousquet, T. N. Lal, J.Weston, and B. Schölkopf, "Learning with local and global consistency," in Proc. Adv. NIPS, vol. 16. 2003, pp. 321-328.
-
(2003)
Proc. Adv. NIPS
, vol.16
, pp. 321-328
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
46
-
-
84867178411
-
New semi-supervised classification method based on modified cluster assumption
-
May
-
Y. Wang, S. Chen, and Z.-H. Zhou, "New semi-supervised classification method based on modified cluster assumption," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 689-702, May 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.5
, pp. 689-702
-
-
Wang, Y.1
Chen, S.2
Zhou, Z.-H.3
-
47
-
-
33745456231
-
-
Dept. Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530
-
X. Zhu, "Semi-supervised learning literature survey," Dept. Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530, 2008.
-
(2008)
Semi-supervised Learning Literature Survey
-
-
Zhu, X.1
-
48
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
Washington, DC, USA, Aug.
-
X. Zhu, Z. Ghahramani, and J. Lafferty, "Semi-supervised learning using Gaussian fields and harmonic functions," in Proc. 20th Int. Conf. Mach. Learn., Washington, DC, USA, Aug. 2003, pp. 912-919.
-
(2003)
Proc. 20th Int. Conf. Mach. Learn.
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
-
49
-
-
31844438481
-
Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
-
Bonn, Germany, Aug.
-
X. Zhu and J. Lafferty, "Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning," in Proc. 22nd Int. Conf. Mach. Learn., Bonn, Germany, Aug. 2005, pp. 1052-1059.
-
(2005)
Proc. 22nd Int. Conf. Mach. Learn.
, pp. 1052-1059
-
-
Zhu, X.1
Lafferty, J.2
|