메뉴 건너뛰기




Volumn 26, Issue 3, 2015, Pages 444-457

Scaling up graph-based semisupervised learning via prototype vector machines

Author keywords

Graph based methods; large data sets; low rank approximation; manifold regularization; semisupervised learning.

Indexed keywords

APPROXIMATION THEORY; SPEECH RECOGNITION; SUPERVISED LEARNING; VIRTUAL REALITY;

EID: 84923874457     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2315526     Document Type: Article
Times cited : (42)

References (49)
  • 1
    • 31844446681 scopus 로고    scopus 로고
    • Predictive low-rank decomposition for kernel methods
    • Bonn, Germany, Aug.
    • F. Bach and M. Jordan, "Predictive low-rank decomposition for kernel methods," in Proc. 22nd Int. Conf. Mach. Learn., Bonn, Germany, Aug. 2005, pp. 33-40.
    • (2005) Proc. 22nd Int. Conf. Mach. Learn. , pp. 33-40
    • Bach, F.1    Jordan, M.2
  • 2
    • 84898963451 scopus 로고    scopus 로고
    • Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data
    • S. Baluja, "Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data," in Proc. Adv. NIPS, vol. 11. 1999, pp. 854-860.
    • (1999) Proc. Adv. NIPS , vol.11 , pp. 854-860
    • Baluja, S.1
  • 3
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering," in Proc. Adv. NIPS, vol. 14. 2002, pp. 585-591.
    • (2002) Proc. Adv. NIPS , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, no. 11, pp. 2399-2434, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , Issue.11 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 5
    • 77956501439 scopus 로고    scopus 로고
    • Does unlabeled data provably help? Worst-case analysis of the sample complexity of semi-supervised learning
    • S. Ben-David, T. Lu, and D. Pal, "Does unlabeled data provably help? Worst-case analysis of the sample complexity of semi-supervised learning," in Proc. 21st Annu. Conf. Learn. Theory, 2008, pp. 33-44.
    • (2008) Proc. 21st Annu. Conf. Learn. Theory , pp. 33-44
    • Ben-David, S.1    Lu, T.2    Pal, D.3
  • 6
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • San Francisco, CA, USA
    • A. Blum and S. Chawla, "Learning from labeled and unlabeled data using graph mincuts," in Proc. 18th Int. Conf. Mach. Learn., San Francisco, CA, USA, 2001, pp. 19-26.
    • (2001) Proc. 18th Int. Conf. Mach. Learn. , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 7
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • New York, NY, USA, Jul.
    • A. Blum and T. Mitchell, "Combining labeled and unlabeled data with co-training," in Proc. 11th Annu. Conf. Comput. Learn. Theory, New York, NY, USA, Jul. 1998, pp. 209-214.
    • (1998) Proc. 11th Annu. Conf. Comput. Learn. Theory , pp. 209-214
    • Blum, A.1    Mitchell, T.2
  • 8
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Oct.
    • G. Camps-Valls, T. V. B. Marsheva, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens. E, vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEe Trans. Geosci. Remote Sens. e , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Marsheva, T.V.B.2    Zhou, D.3
  • 9
    • 0029195475 scopus 로고
    • On the exponential value of labeled samples
    • V. Castelli and T. Cover, "On the exponential value of labeled samples," Pattern Recognit. Lett., vol. 16, no. 1, pp. 105-111, 1995.
    • (1995) Pattern Recognit. Lett. , vol.16 , Issue.1 , pp. 105-111
    • Castelli, V.1    Cover, T.2
  • 12
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • Bellevue, WA, USA Jun.
    • A. Coates and A. Y. Ng, "The importance of encoding versus training with sparse coding and vector quantization," in Proc. 28th Int. Conf. Mach. Learn., Bellevue, WA, USA, Jun. 2011, pp. 921-928.
    • (2011) Proc. 28th Int. Conf. Mach. Learn. , pp. 921-928
    • Coates, A.1    Ng, A.Y.2
  • 14
    • 33751075906 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices II: Computing a low rank approximation to a matrix
    • P. Drineas, R. Kannan, and M. Mahoney, "Fast Monte Carlo algorithms for matrices II: Computing a low rank approximation to a matrix," SIAM J. Comput., vol. 36, no. 1, pp. 158-183, 2006.
    • (2006) SIAM J. Comput. , vol.36 , Issue.1 , pp. 158-183
    • Drineas, P.1    Kannan, R.2    Mahoney, M.3
  • 15
    • 29244453931 scopus 로고    scopus 로고
    • On the Nyström method for approximating a Gram matrix for improved kernel-based learning
    • Dec.
    • P. Drineas and M. W. Mahoney, "On the Nyström method for approximating a Gram matrix for improved kernel-based learning," J. Mach. Learn. Res., vol. 6, pp. 2153-2175, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 2153-2175
    • Drineas, P.1    Mahoney, M.W.2
  • 17
    • 0032308232 scopus 로고    scopus 로고
    • Fast Monte-Carlo algorithms for finding low-rank approximations
    • Palo Alto, CA, USA
    • A. Frieze, R. Kannan, and S. Vempala, "Fast Monte-Carlo algorithms for finding low-rank approximations," in Proc. 39th Annu. Symp. Found. Comput. Sci., Palo Alto, CA, USA, 1998, pp. 370-378.
    • (1998) Proc. 39th Annu. Symp. Found. Comput. Sci. , pp. 370-378
    • Frieze, A.1    Kannan, R.2    Vempala, S.3
  • 18
    • 84898983549 scopus 로고    scopus 로고
    • Hierarchical clustering of a mixture model
    • J. Goldberger and S. Roweis, "Hierarchical clustering of a mixture model," in Proc. Adv. NIPS, vol. 17. 2005, pp. 505-512.
    • (2005) Proc. Adv. NIPS , vol.17 , pp. 505-512
    • Goldberger, J.1    Roweis, S.2
  • 19
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • San Francisco, CA, USA
    • T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th Int. Conf. Mach. Learn., San Francisco, CA, USA, 1999, pp. 200-209.
    • (1999) Proc. 16th Int. Conf. Mach. Learn. , pp. 200-209
    • Joachims, T.1
  • 20
    • 14344255620 scopus 로고    scopus 로고
    • Kernel conditional random fields: Representation and clique selection
    • Banff, AB, Canada, Jul.
    • J. Lafferty, X. Zhu, and Y. Liu, "Kernel conditional random fields: Representation and clique selection," in Proc. 21st Int. Conf. Mach. Learn., Banff, AB, Canada, Jul. 2004, p. 64.
    • (2004) Proc. 21st Int. Conf. Mach. Learn , pp. 64
    • Lafferty, J.1    Zhu, X.2    Liu, Y.3
  • 21
    • 84864032258 scopus 로고    scopus 로고
    • Learning to model spatial dependency: Semi-supervised discriminative random fields
    • Cambridge, MA, USA
    • C.-H. Lee, S. Wang, F. Jiao, D. Schuurmans, and D. Greiner, "Learning to model spatial dependency: Semi-supervised discriminative random fields," in Proc. Adv. NIPS, vol. 19. Cambridge, MA, USA, 2007.
    • (2007) Proc. Adv. NIPS , vol.19
    • Lee, C.-H.1    Wang, S.2    Jiao, F.3    Schuurmans, D.4    Greiner, D.5
  • 22
    • 84876103265 scopus 로고    scopus 로고
    • Laplacian embedded regression for scalable manifold regularization
    • Jun.
    • L. Chen, I. W. Tsang, and D. Xu, "Laplacian embedded regression for scalable manifold regularization," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 6, pp. 902-915, Jun. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.6 , pp. 902-915
    • Chen, L.1    Tsang, I.W.2    Xu, D.3
  • 23
    • 77956555216 scopus 로고    scopus 로고
    • Large graph construction for scalable semi-supervised learning
    • Haifa, Israel Jun.
    • W. Liu, J. He, and S. F. Chang, "Large graph construction for scalable semi-supervised learning," in Proc. 27th Int. Conf. Mach. Learn., Haifa, Israel, Jun. 2010, pp. 679-686.
    • (2010) Proc. 27th Int. Conf. Mach. Learn. , pp. 679-686
    • Liu, W.1    He, J.2    Chang, S.F.3
  • 24
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • S. Melacci and M. Belkin, "Laplacian support vector machines trained in the primal," J. Mach. Learn. Res., vol. 12, no. 3, pp. 1149-1184, 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , Issue.3 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 25
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm," in Proc. Adv. NIPS, vol. 14. 2001, pp. 849-856.
    • (2001) Proc. Adv. NIPS , vol.14 , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 26
    • 84867796463 scopus 로고    scopus 로고
    • Semi-supervised dimension reduction using trace ratio criterion
    • Mar.
    • Y. Huang, D. Xu, and F. Nie, "Semi-supervised dimension reduction using trace ratio criterion," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 3, pp. 519-526, Mar. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.3 , pp. 519-526
    • Huang, Y.1    Xu, D.2    Nie, F.3
  • 27
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Mach. Learn., vol. 39, nos. 2-3, pp. 103-134, 2000.
    • (2000) Mach. Learn. , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 28
    • 34547675831 scopus 로고    scopus 로고
    • Generalization error bounds in semi-supervised classification under the cluster assumption
    • Dec.
    • P. Rigollet, "Generalization error bounds in semi-supervised classification under the cluster assumption," J. Mach. Learn. Res., vol. 8, pp. 1369-1392, Dec. 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1369-1392
    • Rigollet, P.1
  • 29
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 30
    • 0003621102 scopus 로고
    • An introduction to the conjugate gradient method without the agonizing pain
    • Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.
    • J. R. Shewchuk, "An introduction to the conjugate gradient method without the agonizing pain," School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep., 1994.
    • (1994) School Comput. Sci.
    • Shewchuk, J.R.1
  • 31
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Aug.
    • J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 32
    • 84863338319 scopus 로고    scopus 로고
    • Unlabeled data: Now it helps, now it doesn't
    • A. Singh, R. D. Nowak, and X. Zhu, "Unlabeled data: Now it helps, now it doesn't," in Proc. Adv. NIPS, 2008, pp. 1513-1520.
    • (2008) Proc. Adv. NIPS , pp. 1513-1520
    • Singh, A.1    Nowak, R.D.2    Zhu, X.3
  • 33
    • 84876888732 scopus 로고    scopus 로고
    • Semisupervised classification with cluster regularization
    • Nov.
    • R. G. F. Soares, H. Chen, and X. Yao, "Semisupervised classification with cluster regularization," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 11, pp. 1779-1792, Nov. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.11 , pp. 1779-1792
    • Soares, R.G.F.1    Chen, H.2    Yao, X.3
  • 34
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 35
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Statist., Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Roy. Statist., Soc. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 36
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large data sets
    • Dec.
    • I. W. Tsang, J. T. Kwok, and P.-M. Cheung, "Core vector machines: Fast SVM training on very large data sets," J. Mach. Learn. Res., vol. 6, pp. 363-392, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.-M.3
  • 37
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • C. Williams and M. Seeger, "Using the Nyström method to speed up kernel machines," in Proc. Adv. NIPS, vol. 13. 2001, pp. 682-688.
    • (2001) Proc. Adv. NIPS , vol.13 , pp. 682-688
    • Williams, C.1    Seeger, M.2
  • 38
    • 77954565155 scopus 로고    scopus 로고
    • Discriminative semisupervised feature selection via manifold regularization
    • Jul.
    • Z. Xu, I. King, M. R.-T. Lyu, and R. Jin, "Discriminative semisupervised feature selection via manifold regularization," IEEE Trans. Neural Netw., vol. 21, no. 7, pp. 1033-1047, Jul. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.7 , pp. 1033-1047
    • Xu, Z.1    King, I.2    Lyu, M.R.-T.3    Jin, R.4
  • 39
    • 85141919230 scopus 로고
    • Unsupervised word-sense disambiguation rivaling supervised methods
    • Stroudsburg, PA, USA
    • D. Yarowsky, "Unsupervised word-sense disambiguation rivaling supervised methods," in Proc. 33rd Annu. Meet. Assoc. Comput. Linguistics, Stroudsburg, PA, USA, 1995, pp. 189-196.
    • (1995) Proc. 33rd Annu. Meet. Assoc. Comput. Linguistics , pp. 189-196
    • Yarowsky, D.1
  • 40
    • 56449087564 scopus 로고    scopus 로고
    • Improved Nyström low rank approximation and error analysis
    • Helsinki, Finland, Jun.
    • K. Zhang and J. T. Kwok, "Improved Nyström low rank approximation and error analysis," in Proc. 25th Int. Conf. Mach. Learn., Helsinki, Finland, Jun. 2008, pp. 1232-1239.
    • (2008) Proc. 25th Int. Conf. Mach. Learn. , pp. 1232-1239
    • Zhang, K.1    Kwok, J.T.2
  • 41
    • 77957779140 scopus 로고    scopus 로고
    • Clustered Nyström method for large scale manifold learning and dimension reduction
    • Oct.
    • K. Zhang and J. T. Kwok, "Clustered Nyström method for large scale manifold learning and dimension reduction," IEEE Trans. Neural Netw., vol. 21, no. 10, pp. 1576-1587, Oct. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.10 , pp. 1576-1587
    • Zhang, K.1    Kwok, J.T.2
  • 42
    • 70049106797 scopus 로고    scopus 로고
    • Prototype vector machine for large scale semi-supervised learning
    • Montreal, QC, Canada, Jun.
    • K. Zhang, J. T. Kwok, and B. Parvin, "Prototype vector machine for large scale semi-supervised learning," in Proc. 26th Int. Conf. Mach. Learn., Montreal, QC, Canada, Jun. 2009, pp. 1233-1240.
    • (2009) Proc. 26th Int. Conf. Mach. Learn. , pp. 1233-1240
    • Zhang, K.1    Kwok, J.T.2    Parvin, B.3
  • 43
    • 84879867381 scopus 로고    scopus 로고
    • Scaling up kernel SVM on limited resources: A low-rank linearization approach
    • K. Zhang, L. Lan, Z. Wang, and F. Moerchen, "Scaling up kernel SVM on limited resources: A low-rank linearization approach," in Proc. Int. Conf. Artif. Intell. Statist., 2012, pp. 1425-1434.
    • (2012) Proc. Int. Conf. Artif. Intell. Statist. , pp. 1425-1434
    • Zhang, K.1    Lan, L.2    Wang, Z.3    Moerchen, F.4
  • 46
    • 84867178411 scopus 로고    scopus 로고
    • New semi-supervised classification method based on modified cluster assumption
    • May
    • Y. Wang, S. Chen, and Z.-H. Zhou, "New semi-supervised classification method based on modified cluster assumption," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 689-702, May 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.5 , pp. 689-702
    • Wang, Y.1    Chen, S.2    Zhou, Z.-H.3
  • 47
    • 33745456231 scopus 로고    scopus 로고
    • Dept. Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530
    • X. Zhu, "Semi-supervised learning literature survey," Dept. Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530, 2008.
    • (2008) Semi-supervised Learning Literature Survey
    • Zhu, X.1
  • 48
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • Washington, DC, USA, Aug.
    • X. Zhu, Z. Ghahramani, and J. Lafferty, "Semi-supervised learning using Gaussian fields and harmonic functions," in Proc. 20th Int. Conf. Mach. Learn., Washington, DC, USA, Aug. 2003, pp. 912-919.
    • (2003) Proc. 20th Int. Conf. Mach. Learn. , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 49
    • 31844438481 scopus 로고    scopus 로고
    • Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
    • Bonn, Germany, Aug.
    • X. Zhu and J. Lafferty, "Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning," in Proc. 22nd Int. Conf. Mach. Learn., Bonn, Germany, Aug. 2005, pp. 1052-1059.
    • (2005) Proc. 22nd Int. Conf. Mach. Learn. , pp. 1052-1059
    • Zhu, X.1    Lafferty, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.