메뉴 건너뛰기




Volumn 206, Issue 3, 2010, Pages 528-539

A discrete particle swarm optimization method for feature selection in binary classification problems

Author keywords

Binary classification; Feature selection; Logistic regression; Metaheuristics; Particle swarm optimization

Indexed keywords

ADAPTIVE FEATURE SELECTION; BINARY CLASSIFICATION; BINARY CLASSIFICATION PROBLEMS; CLASSIFICATION ACCURACY; COMPUTATIONAL PERFORMANCE; DATA SETS; DISCRETE PARTICLE SWARM OPTIMIZATION; DISCRETE PARTICLE SWARM OPTIMIZATION METHOD; FEATURE SELECTION; FEATURE SUBSET; FEATURE SUBSET SELECTION; LOGISTIC REGRESSION; LOGISTIC REGRESSION MODELS; LOGISTIC REGRESSIONS; META HEURISTICS; PSO ALGORITHMS; SCATTER SEARCH ALGORITHM;

EID: 77951139898     PISSN: 03772217     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ejor.2010.02.032     Document Type: Article
Times cited : (390)

References (57)
  • 2
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • Amaldi E., and Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science 209 1-2 (1998) 237-260
    • (1998) Theoretical Computer Science , vol.209 , Issue.1-2 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 4
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., and Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 97 1-2 (1997) 245-271
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 6
    • 60249087028 scopus 로고    scopus 로고
    • Different metaheuristic strategies to solve the feature selection problem
    • Casado S. Different metaheuristic strategies to solve the feature selection problem. Pattern Recognition Letters 30 5 (2009) 525-534
    • (2009) Pattern Recognition Letters , vol.30 , Issue.5 , pp. 525-534
    • Casado, S.1
  • 7
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • Clerc M., and Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6 1 (2002) 58-73
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 9
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., and Liu H. Feature selection for classification. Intelligent Data Analysis 1 (1997) 131-156
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 11
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 12
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 (1998) 1895-1924
    • (1998) Neural Computation , vol.10 , pp. 1895-1924
    • Dietterich, T.G.1
  • 14
    • 0041912948 scopus 로고    scopus 로고
    • Evolving data into mining solutions for insights
    • Fayyad U., and Uthurusamy R. Evolving data into mining solutions for insights. Communications of the ACM 45 8 (2002) 28-31
    • (2002) Communications of the ACM , vol.45 , Issue.8 , pp. 28-31
    • Fayyad, U.1    Uthurusamy, R.2
  • 15
    • 33947268013 scopus 로고    scopus 로고
    • A stochastic algorithm for feature selection in pattern recognition
    • Gadat S., and Younes L. A stochastic algorithm for feature selection in pattern recognition. Journal of Machine Learning Research 8 (2007) 509-547
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 509-547
    • Gadat, S.1    Younes, L.2
  • 20
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations in pattern recognition in practice
    • Handbook of Statistics. Krishnaiah P.R., and Kanal L.N. (Eds), North-Holland, Amsterdam
    • Jain A.K., and Chandrasekaran B. Dimensionality and sample size considerations in pattern recognition in practice. In: Krishnaiah P.R., and Kanal L.N. (Eds). Handbook of Statistics. vol. 2 (1982), North-Holland, Amsterdam 835-855
    • (1982) vol. 2 , pp. 835-855
    • Jain, A.K.1    Chandrasekaran, B.2
  • 23
    • 0038636391 scopus 로고    scopus 로고
    • A comparative assessment of classification methods
    • Kiang M.Y. A comparative assessment of classification methods. Decision Support Systems 35 4 (2003) 441-454
    • (2003) Decision Support Systems , vol.35 , Issue.4 , pp. 441-454
    • Kiang, M.Y.1
  • 26
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., and Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17 4 (2005) 491-502
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 27
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition systems
    • Marill T., and Green D.M. On the effectiveness of receptors in recognition systems. IEEE Transactions on Information Theory 9 1 (1963) 11-17
    • (1963) IEEE Transactions on Information Theory , vol.9 , Issue.1 , pp. 11-17
    • Marill, T.1    Green, D.M.2
  • 28
    • 31144448615 scopus 로고    scopus 로고
    • Using simulated annealing to optimize the feature selection problem in marketing applications
    • Meiri R., and Zahavi J. Using simulated annealing to optimize the feature selection problem in marketing applications. European Journal of Operational Research 171 3 (2006) 842-858
    • (2006) European Journal of Operational Research , vol.171 , Issue.3 , pp. 842-858
    • Meiri, R.1    Zahavi, J.2
  • 29
    • 21244446518 scopus 로고    scopus 로고
    • A Comparison of Numerical Optimizers for Logistic Regression
    • Technical Report, 758, Carnegie Mellon University
    • Minka, T., 2003. A Comparison of Numerical Optimizers for Logistic Regression. Technical Report, 758, Carnegie Mellon University.
    • (2003)
    • Minka, T.1
  • 30
    • 0002337827 scopus 로고    scopus 로고
    • Machine learning and data mining
    • Mitchell T.M. Machine learning and data mining. Communications of the ACM 42 11 (1999) 30-36
    • (1999) Communications of the ACM , vol.42 , Issue.11 , pp. 30-36
    • Mitchell, T.M.1
  • 31
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Narendra P.M., and Fukunaga K. A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers 26 9 (1977) 917-922
    • (1977) IEEE Transactions on Computers , vol.26 , Issue.9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 33
    • 25144463998 scopus 로고    scopus 로고
    • Intelligent partitioning for feature selection
    • Olafsson S., and Yang J. Intelligent partitioning for feature selection. INFORMS Journal on Computing 17 3 (2005) 339-355
    • (2005) INFORMS Journal on Computing , vol.17 , Issue.3 , pp. 339-355
    • Olafsson, S.1    Yang, J.2
  • 35
    • 0000580379 scopus 로고
    • Variations in decision makers' use of information sources: the impact of quality and accessibility of information
    • O'Reilly C.A. Variations in decision makers' use of information sources: the impact of quality and accessibility of information. Academy of Management Journal 25 4 (1982) 756-771
    • (1982) Academy of Management Journal , vol.25 , Issue.4 , pp. 756-771
    • O'Reilly, C.A.1
  • 37
    • 34147186185 scopus 로고    scopus 로고
    • Use of VNS and TS in classification: Variable selection and determination of the linear discrimination function coefficients
    • Pacheco J., Casado S., and Núñez L. Use of VNS and TS in classification: Variable selection and determination of the linear discrimination function coefficients. IMA Journal of Management Mathematics 18 2 (2007) 191-206
    • (2007) IMA Journal of Management Mathematics , vol.18 , Issue.2 , pp. 191-206
    • Pacheco, J.1    Casado, S.2    Núñez, L.3
  • 38
    • 67349161370 scopus 로고    scopus 로고
    • A variable selection method based on tabu search for logistic regression models
    • Pacheco J., Casado S., and Núñez L. A variable selection method based on tabu search for logistic regression models. European Journal of Operational Research 199 2 (2009) 506-511
    • (2009) European Journal of Operational Research , vol.199 , Issue.2 , pp. 506-511
    • Pacheco, J.1    Casado, S.2    Núñez, L.3
  • 41
    • 0036107187 scopus 로고    scopus 로고
    • A unifying view on instance selection
    • Reinartz T. A unifying view on instance selection. Data Mining and Knowledge Discovery 6 2 (2002) 191-210
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 191-210
    • Reinartz, T.1
  • 42
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen J. Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research 3 (2003) 1371-1382
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 43
    • 56249124589 scopus 로고    scopus 로고
    • Optimizing logistic regression coefficients for discrimination and calibration using estimation of distribution algorithms
    • Robles V., Bielza C., Larrañaga P., González S., and Ohno-Machado L. Optimizing logistic regression coefficients for discrimination and calibration using estimation of distribution algorithms. TOP 16 2 (2008) 345-366
    • (2008) TOP , vol.16 , Issue.2 , pp. 345-366
    • Robles, V.1    Bielza, C.2    Larrañaga, P.3    González, S.4    Ohno-Machado, L.5
  • 44
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: pitfalls to avoid and a recommended approach
    • Salzberg S.L. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1 3 (1997) 317-328
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.3 , pp. 317-328
    • Salzberg, S.L.1
  • 46
    • 33846695029 scopus 로고    scopus 로고
    • Framework for efficient feature selection in genetic algorithm based data mining
    • Sikora R., and Piramuthu S. Framework for efficient feature selection in genetic algorithm based data mining. European Journal of Operational Research 180 2 (2007) 723-737
    • (2007) European Journal of Operational Research , vol.180 , Issue.2 , pp. 723-737
    • Sikora, R.1    Piramuthu, S.2
  • 49
    • 50049085274 scopus 로고    scopus 로고
    • Comparison of population based metaheuristics for feature selection: Application to microarray data classification
    • Talbi, E-G., Jourdan, L., Garcia-Nieto, J., Alba, E., 2008. Comparison of population based metaheuristics for feature selection: Application to microarray data classification. In: Proceedings of AICCSA 2008.
    • (2008) Proceedings of AICCSA
    • Talbi, E.-G.1    Jourdan, L.2    Garcia-Nieto, J.3    Alba, E.4
  • 51
    • 0033257342 scopus 로고    scopus 로고
    • A genetic algorithm to select variables in logistic regression: Example in the domain of myocardial infarction
    • Vinterbo S., and Ohno-Machado L. A genetic algorithm to select variables in logistic regression: Example in the domain of myocardial infarction. Journal of the American Medical Informatics Association 6 (1999) 984-988
    • (1999) Journal of the American Medical Informatics Association , vol.6 , pp. 984-988
    • Vinterbo, S.1    Ohno-Machado, L.2
  • 52
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • Wang X., Yang J., Teng X., Xia W., and Jensen R. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters 28 4 (2007) 459-471
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 53
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • Whitney A.W. A direct method of nonparametric measurement selection. IEEE Transactions on Computers 20 9 (1971) 1100-1103
    • (1971) IEEE Transactions on Computers , vol.20 , Issue.9 , pp. 1100-1103
    • Whitney, A.W.1
  • 54
    • 4444345418 scopus 로고    scopus 로고
    • Applications of optimization heuristics to estimation and modeling problems
    • Winker P., and Gilli M. Applications of optimization heuristics to estimation and modeling problems. Computational Statistics and Data Analysis 47 2 (2004) 211-223
    • (2004) Computational Statistics and Data Analysis , vol.47 , Issue.2 , pp. 211-223
    • Winker, P.1    Gilli, M.2
  • 56
    • 33644686999 scopus 로고    scopus 로고
    • Optimization-based feature selection with adaptive instance sampling
    • Yang J., and Olafsson S. Optimization-based feature selection with adaptive instance sampling. Computers & Operations Research 33 11 (2006) 3088-3106
    • (2006) Computers & Operations Research , vol.33 , Issue.11 , pp. 3088-3106
    • Yang, J.1    Olafsson, S.2
  • 57
    • 0035294798 scopus 로고    scopus 로고
    • Feature selection using tabu search method
    • Zhang H., and Sun G. Feature selection using tabu search method. Pattern Recognition 35 3 (2002) 701-711
    • (2002) Pattern Recognition , vol.35 , Issue.3 , pp. 701-711
    • Zhang, H.1    Sun, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.