메뉴 건너뛰기




Volumn 70, Issue 1, 2008, Pages 1-20

Feature selection via sensitivity analysis of SVM probabilistic outputs

Author keywords

Feature ranking; Feature selection; Sensitivity; Support vector machines

Indexed keywords

APPROXIMATION THEORY; PROBABILISTIC LOGICS; PROBLEM SOLVING; REAL TIME SYSTEMS; SENSITIVITY ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 36849082989     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-007-5025-7     Document Type: Article
Times cited : (68)

References (39)
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • 2
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • 1
    • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning, 46, 131-159.
    • (2002) Machine Learning , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 0042326376 scopus 로고    scopus 로고
    • Bayesian trigonometric support vector classifier
    • 9
    • Chu, W., Keerthi, S. S., & Ong, C. J. (2003). Bayesian trigonometric support vector classifier. Neural Computation, 15(9), 2227-2254.
    • (2003) Neural Computation , vol.15 , pp. 2227-2254
    • Chu, W.1    Keerthi, S.S.2    Ong, C.J.3
  • 8
    • 1242331293 scopus 로고    scopus 로고
    • Bayesian support vector regression using a unified loss function
    • 1
    • Chu, W., Keerthi, S. S., & Ong, C. J. (2004). Bayesian support vector regression using a unified loss function. IEEE Transactions on Neural Networks, 15(1), 29-44.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , pp. 29-44
    • Chu, W.1    Keerthi, S.S.2    Ong, C.J.3
  • 9
    • 34249753618 scopus 로고
    • Support vector networks
    • 3
    • Cortes, C., & Vapnik, V. N. (1995). Support vector networks. Machine Learning, 20(3), 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 11
    • 26444573178 scopus 로고    scopus 로고
    • Which is the best multiclass SVM method? An empirical study
    • Duan, K. B., & Keerthi, S. S. (2005). Which is the best multiclass SVM method? An empirical study. Lecture Notes in Computer Science, 3541, 278-285.
    • (2005) Lecture Notes in Computer Science , vol.3541 , pp. 278-285
    • Duan, K.B.1    Keerthi, S.S.2
  • 13
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • 1-3
    • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. N. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3), 389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.N.4
  • 17
    • 23844545305 scopus 로고    scopus 로고
    • Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition
    • 11
    • Günter, S., & Bunke, H. (2004). Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition. Pattern Recognition Letters, 25(11), 1323-1336.
    • (2004) Pattern Recognition Letters , vol.25 , pp. 1323-1336
    • Günter, S.1    Bunke, H.2
  • 18
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • 2
    • Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling. The Annals of Statistics, 26(2), 451-471.
    • (1998) The Annals of Statistics , vol.26 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 20
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • 5
    • Keerthi, S. S. (2002). Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Transactions on Neural Networks, 13(5), 1225-1229.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 1225-1229
    • Keerthi, S.S.1
  • 21
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 23
    • 0003710388 scopus 로고    scopus 로고
    • (Technical Report). Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
    • Lee, J. H., & Lin, C. J. (2000). Automatic model selection for support vector machines (Technical Report). Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan. Online at http://www.csie.ntu.edu.tw/cjlin/papers/modelselect.ps.gz.
    • (2000) Automatic Model Selection for Support Vector Machines
    • Lee, J.H.1    Lin, C.J.2
  • 26
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • 1-3
    • Neumann, J., Schnörr, C., & Steidl, G. (2005). Combined SVM-based feature selection and classification. Machine Learning, 61(1-3), 129-150.
    • (2005) Machine Learning , vol.61 , pp. 129-150
    • Neumann, J.1    Schnörr, C.2    Steidl, G.3
  • 27
    • 33745834241 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science. http://www.ics.uci.edu/~mlearn/ MLRepository.html.
    • (1998) UCI Repository of Machine Learning Databases
    • Newman, D.J.1    Hettich, S.2    Blake, C.L.3    Merzc., J.4
  • 28
    • 36849001186 scopus 로고
    • A note on generating random permutations
    • 3
    • Page, E. S. (1967). A note on generating random permutations. Applied Statistics, 16(3), 273-274.
    • (1967) Applied Statistics , vol.16 , pp. 273-274
    • Page, E.S.1
  • 30
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press Cambridge
    • Platt, J. (2000). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. Smola, P. Bartlett, B. Scholkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers. Cambridge: MIT Press.
    • (2000) Advances in Large Margin Classifiers
    • Platt, J.1    Smola, A.2    Bartlett, P.3    Scholkopf, B.4    Schuurmans, D.5
  • 34
    • 84899016174 scopus 로고    scopus 로고
    • Minimum Bayes error feature selection for continuous speech recognition
    • T. Leen, T. Dietterich, & V. Tresp (Eds.)
    • Saon, G., & Padmanabhan, M. (2001). Minimum Bayes error feature selection for continuous speech recognition. In T. Leen, T. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems (Vol. 13, pp. 800-806).
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 800-806
    • Saon, G.1    Padmanabhan, M.2
  • 37
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • 9
    • Vapnik, V. N., & Chapelle, O. (2000). Bounds on error expectation for support vector machines. Neural Computation, 12(9), 2013-2036.
    • (2000) Neural Computation , vol.12 , pp. 2013-2036
    • Vapnik, V.N.1    Chapelle, O.2
  • 39
    • 0002295913 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D.S. Touretzky, M.C. Mozer, & M.E. Hasselmo (Eds.)
    • Williams, C. K. I., & Rasmussen, C. E. (1996). Gaussian processes for regression. In D.S. Touretzky, M.C. Mozer, & M.E. Hasselmo (Eds.), Advances in neural information processing systems (Vol. 8, pp. 598-604).
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 598-604
    • Williams, C.K.I.1    Rasmussen, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.