메뉴 건너뛰기




Volumn 42, Issue 2, 2017, Pages 141-154

A New View into the Regulation of Purine Metabolism: The Purinosome

Author keywords

metabolon; purine metabolism; purinosome

Indexed keywords

6 MERCAPTOPURINE DERIVATIVE; ANTINEOPLASTIC ANTIMETABOLITE; DEOXYPURINE DERIVATIVE; LOMETREXOL; MAMMALIAN TARGET OF RAPAMYCIN; MERCAPTOPURINE; METHOTREXATE; MULTIENZYME COMPLEX; PEMETREXED; PURINE; PURINOSOME; UNCLASSIFIED DRUG; PURINE DERIVATIVE;

EID: 85005975973     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.09.009     Document Type: Review
Times cited : (394)

References (88)
  • 2
    • 84918013437 scopus 로고
    • On the activation of the one-carbon unit for the biosynthesis of purine nucleotides
    • G.E.W. Wolstenholme C.M. O'Connor John Wiley & Sons
    • 2 Greenberg, G.R., Jaenicke, L., On the activation of the one-carbon unit for the biosynthesis of purine nucleotides. Wolstenholme, G.E.W., O'Connor, C.M., (eds.) Ciba Foundation Symposium - Chemistry and Biology of Purines, 1957, John Wiley & Sons, 204–232.
    • (1957) Ciba Foundation Symposium - Chemistry and Biology of Purines , pp. 204-232
    • Greenberg, G.R.1    Jaenicke, L.2
  • 3
    • 0001648656 scopus 로고
    • Nucleic acids, purines, pyrimidines (nucleotide synthesis)
    • 3 Hartman, S.C., Buchanan, J.M., Nucleic acids, purines, pyrimidines (nucleotide synthesis). Annu. Rev. Biochem. 28 (1959), 365–410.
    • (1959) Annu. Rev. Biochem. , vol.28 , pp. 365-410
    • Hartman, S.C.1    Buchanan, J.M.2
  • 4
    • 0028898649 scopus 로고
    • Investigation of the mechanism of phosphoribosylamine transfer from glutamine phosphoribosylpyrophosphate amidotransferase to glycinamide ribonucleotide synthetase
    • 4 Rudolph, J., Stubbe, J., Investigation of the mechanism of phosphoribosylamine transfer from glutamine phosphoribosylpyrophosphate amidotransferase to glycinamide ribonucleotide synthetase. Biochemistry 34 (1995), 2241–2250.
    • (1995) Biochemistry , vol.34 , pp. 2241-2250
    • Rudolph, J.1    Stubbe, J.2
  • 5
    • 0019315396 scopus 로고
    • Characterization of the enzyme complex involving the folate-requiring enzymes of de novo purine biosynthesis
    • 5 Smith, G.K., et al. Characterization of the enzyme complex involving the folate-requiring enzymes of de novo purine biosynthesis. Biochemistry 19 (1980), 4313–4321.
    • (1980) Biochemistry , vol.19 , pp. 4313-4321
    • Smith, G.K.1
  • 6
    • 41749092312 scopus 로고    scopus 로고
    • Reversible compartmentalization of de novo purine biosynthetic complexes in living cells
    • 6 An, S., et al. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320 (2008), 103–106.
    • (2008) Science , vol.320 , pp. 103-106
    • An, S.1
  • 7
    • 14444271633 scopus 로고
    • On the mechanism of feedback inhibition of purine biosynthesis de novo in Ehrlich ascites tumor cells in vitro
    • 7 Henderson, J.F., Khoo, K.Y., On the mechanism of feedback inhibition of purine biosynthesis de novo in Ehrlich ascites tumor cells in vitro. J. Biol. Chem. 240 (1965), 3104–3109.
    • (1965) J. Biol. Chem. , vol.240 , pp. 3104-3109
    • Henderson, J.F.1    Khoo, K.Y.2
  • 8
    • 0015180175 scopus 로고
    • The biological significance of purine salvage
    • 8 Murray, A.W., The biological significance of purine salvage. Annu. Rev. Biochem. 40 (1971), 811–826.
    • (1971) Annu. Rev. Biochem. , vol.40 , pp. 811-826
    • Murray, A.W.1
  • 9
    • 0030859943 scopus 로고    scopus 로고
    • Amidophosphoribosyltransferase limits the rate of cell growth-linked de novo purine biosynthesis in the presence of constant capacity of salvage purine biosynthesis
    • 9 Yamaoka, T., et al. Amidophosphoribosyltransferase limits the rate of cell growth-linked de novo purine biosynthesis in the presence of constant capacity of salvage purine biosynthesis. J. Biol. Chem. 272 (1997), 17719–17725.
    • (1997) J. Biol. Chem. , vol.272 , pp. 17719-17725
    • Yamaoka, T.1
  • 10
    • 0025041872 scopus 로고
    • Expression of key enzymes of purine and pyrimidine metabolism in a hepatocyte-derived cell line at different phases of the growth cycle
    • 10 Mayer, D., et al. Expression of key enzymes of purine and pyrimidine metabolism in a hepatocyte-derived cell line at different phases of the growth cycle. J. Cancer Res. Clin. Oncol. 116 (1990), 251–258.
    • (1990) J. Cancer Res. Clin. Oncol. , vol.116 , pp. 251-258
    • Mayer, D.1
  • 11
    • 0021136347 scopus 로고
    • Enzymic capacities of purine de novo and salvage pathways for nucleotide synthesis in normal and neoplastic tissues
    • 11 Natsumeda, Y., et al. Enzymic capacities of purine de novo and salvage pathways for nucleotide synthesis in normal and neoplastic tissues. Cancer Res. 44 (1984), 2475–2479.
    • (1984) Cancer Res. , vol.44 , pp. 2475-2479
    • Natsumeda, Y.1
  • 12
    • 84902332213 scopus 로고    scopus 로고
    • Quantitative flux analysis reveals folate-dependent NADPH production
    • 12 Fan, J., et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510 (2014), 298–302.
    • (2014) Nature , vol.510 , pp. 298-302
    • Fan, J.1
  • 13
    • 84975455372 scopus 로고    scopus 로고
    • Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway
    • 13 Ducker, G.S., et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 23 (2016), 1140–1153.
    • (2016) Cell Metab. , vol.23 , pp. 1140-1153
    • Ducker, G.S.1
  • 14
    • 85069238542 scopus 로고    scopus 로고
    • Mitochondria as biosynthetic factories for cancer proliferation
    • 14 Ahn, C.S., Metallo, C.M., Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab., 3, 2015, 1.
    • (2015) Cancer Metab. , vol.3 , pp. 1
    • Ahn, C.S.1    Metallo, C.M.2
  • 15
    • 84904504373 scopus 로고    scopus 로고
    • Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells
    • 15 Lewis, C.A., et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55 (2014), 253–263.
    • (2014) Mol. Cell , vol.55 , pp. 253-263
    • Lewis, C.A.1
  • 16
    • 0035032121 scopus 로고    scopus 로고
    • Crystal structure of a bifunctional transformylase and cyclohydrolase enzyme in purine biosynthesis
    • 16 Greasley, S.E., et al. Crystal structure of a bifunctional transformylase and cyclohydrolase enzyme in purine biosynthesis. Nat. Struct. Biol. 8 (2001), 402–406.
    • (2001) Nat. Struct. Biol. , vol.8 , pp. 402-406
    • Greasley, S.E.1
  • 17
    • 0035896591 scopus 로고    scopus 로고
    • Human 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine 5’-monophosphate cyclohydrolase. A bifunctional protein requiring dimerization for transformylase activity but not for cyclohydrolase activity
    • 17 Vergis, J.M., et al. Human 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine 5’-monophosphate cyclohydrolase. A bifunctional protein requiring dimerization for transformylase activity but not for cyclohydrolase activity. J. Biol. Chem. 276 (2001), 7727–7733.
    • (2001) J. Biol. Chem. , vol.276 , pp. 7727-7733
    • Vergis, J.M.1
  • 18
    • 0015918864 scopus 로고
    • Human glutamine phosphoribosylpyrophosphate amidotransferase. Kinetic and regulatory properties
    • 18 Holmes, E.W., et al. Human glutamine phosphoribosylpyrophosphate amidotransferase. Kinetic and regulatory properties. J. Biol. Chem. 248 (1973), 144–150.
    • (1973) J. Biol. Chem. , vol.248 , pp. 144-150
    • Holmes, E.W.1
  • 19
    • 0032425445 scopus 로고    scopus 로고
    • Glutamine PRPP amidotransferase: snapshots of an enzyme in action
    • 19 Smith, J.L., Glutamine PRPP amidotransferase: snapshots of an enzyme in action. Curr. Opin. Struct. Biol. 8 (1998), 686–694.
    • (1998) Curr. Opin. Struct. Biol. , vol.8 , pp. 686-694
    • Smith, J.L.1
  • 20
    • 0035877810 scopus 로고    scopus 로고
    • Feedback inhibition of amidophosphoribosyltransferase regulates the rate of cell growth via purine nucleotide, DNA, and protein syntheses
    • 20 Yamaoka, T., et al. Feedback inhibition of amidophosphoribosyltransferase regulates the rate of cell growth via purine nucleotide, DNA, and protein syntheses. J. Biol. Chem. 276 (2001), 21285–21291.
    • (2001) J. Biol. Chem. , vol.276 , pp. 21285-21291
    • Yamaoka, T.1
  • 21
    • 0028355801 scopus 로고
    • Binding of purine nucleotides to two regulatory sites results in synergistic feedback inhibition of glutamine 5-phosphoribosylpyrophosphate amidotransferase
    • 21 Zhou, G., et al. Binding of purine nucleotides to two regulatory sites results in synergistic feedback inhibition of glutamine 5-phosphoribosylpyrophosphate amidotransferase. J. Biol. Chem. 269 (1994), 6784–6789.
    • (1994) J. Biol. Chem. , vol.269 , pp. 6784-6789
    • Zhou, G.1
  • 22
    • 84937815403 scopus 로고    scopus 로고
    • AMPK Activation via modulation of de novo purine biosynthesis with an inhibitor of ATIC homodimerization
    • 22 Asby, D.J., et al. AMPK Activation via modulation of de novo purine biosynthesis with an inhibitor of ATIC homodimerization. Chem. Biol. 22 (2015), 838–848.
    • (2015) Chem. Biol. , vol.22 , pp. 838-848
    • Asby, D.J.1
  • 23
    • 84893361058 scopus 로고    scopus 로고
    • Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK
    • 23 Liu, X., et al. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), E435–E444.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E435-E444
    • Liu, X.1
  • 24
    • 84978766861 scopus 로고    scopus 로고
    • Sequestration-mediated downregulation of de novo purine biosynthesis by AMPK
    • 24 Schmitt, D.L., et al. Sequestration-mediated downregulation of de novo purine biosynthesis by AMPK. ACS Chem. Biol. 11 (2016), 1917–1924.
    • (2016) ACS Chem. Biol. , vol.11 , pp. 1917-1924
    • Schmitt, D.L.1
  • 25
    • 84896764451 scopus 로고    scopus 로고
    • SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells
    • 25 Keller, K.E., et al. SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol. Cell 53 (2014), 700–709.
    • (2014) Mol. Cell , vol.53 , pp. 700-709
    • Keller, K.E.1
  • 26
    • 84869888609 scopus 로고    scopus 로고
    • SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions
    • 26 Keller, K.E., et al. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science 338 (2012), 1069–1072.
    • (2012) Science , vol.338 , pp. 1069-1072
    • Keller, K.E.1
  • 27
    • 84983627677 scopus 로고    scopus 로고
    • Succinyl-5-aminoimidazole-4-carboxamide-1-ribose 5’-phosphate (SAICAR) activates pyruvate kinase isoform M2 (PKM2) in its dimeric form
    • 27 Yan, M., et al. Succinyl-5-aminoimidazole-4-carboxamide-1-ribose 5’-phosphate (SAICAR) activates pyruvate kinase isoform M2 (PKM2) in its dimeric form. Biochemistry 55 (2016), 4731–4736.
    • (2016) Biochemistry , vol.55 , pp. 4731-4736
    • Yan, M.1
  • 28
    • 0022515187 scopus 로고
    • Organization of citric acid cycle enzymes into a multienzyme cluster
    • 28 Barnes, S.J., Weitzman, P.D., Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett. 201 (1986), 267–270.
    • (1986) FEBS Lett. , vol.201 , pp. 267-270
    • Barnes, S.J.1    Weitzman, P.D.2
  • 29
    • 14044251591 scopus 로고    scopus 로고
    • Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane
    • 29 Campanella, M.E., et al. Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc. Natl. Acad. Sci. U.S.A. 102 (2005), 2402–2407.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 2402-2407
    • Campanella, M.E.1
  • 30
    • 0024278406 scopus 로고
    • Characterization and chemical properties of phosphoribosylamine, an unstable intermediate in the de novo purine biosynthetic pathway
    • 30 Schendel, F.J., et al. Characterization and chemical properties of phosphoribosylamine, an unstable intermediate in the de novo purine biosynthetic pathway. Biochemistry 27 (1988), 2614–2623.
    • (1988) Biochemistry , vol.27 , pp. 2614-2623
    • Schendel, F.J.1
  • 31
    • 0030000361 scopus 로고    scopus 로고
    • Substrate specificity of glycinamide ribonucleotide synthetase from chicken liver
    • 31 Antle, V.D., et al. Substrate specificity of glycinamide ribonucleotide synthetase from chicken liver. J. Biol. Chem. 271 (1996), 8192–8195.
    • (1996) J. Biol. Chem. , vol.271 , pp. 8192-8195
    • Antle, V.D.1
  • 32
    • 84867881743 scopus 로고    scopus 로고
    • Structure-based prediction of protein-protein interactions on a genome-wide scale
    • 32 Zhang, Q.C., et al. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 490 (2012), 556–560.
    • (2012) Nature , vol.490 , pp. 556-560
    • Zhang, Q.C.1
  • 33
    • 84992665514 scopus 로고    scopus 로고
    • CRISPR–Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation
    • Published online August 24, 2016
    • 33 Baresova, V., et al. CRISPR–Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation. Mol. Genet. Metab., 2016, 10.1016/j.ymgme.2016.08.004 Published online August 24, 2016.
    • (2016) Mol. Genet. Metab.
    • Baresova, V.1
  • 34
    • 84858214646 scopus 로고    scopus 로고
    • Mutations of ATIC and ADSL affect purinosome assembly in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency
    • 34 Baresova, V., et al. Mutations of ATIC and ADSL affect purinosome assembly in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency. Hum. Mol. Genet. 21 (2012), 1534–1543.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 1534-1543
    • Baresova, V.1
  • 35
    • 84924943411 scopus 로고    scopus 로고
    • Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis
    • 35 Zhao, H., et al. Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis. J. Biol. Chem. 290 (2015), 6705–6713.
    • (2015) J. Biol. Chem. , vol.290 , pp. 6705-6713
    • Zhao, H.1
  • 36
    • 84922326745 scopus 로고    scopus 로고
    • Purinosome formation as a function of the cell cycle
    • 36 Chan, C.Y., et al. Purinosome formation as a function of the cell cycle. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 1368–1373.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 1368-1373
    • Chan, C.Y.1
  • 37
    • 84873701617 scopus 로고    scopus 로고
    • Hsp70/Hsp90 chaperone machinery is involved in the assembly of the purinosome
    • 37 French, J.B., et al. Hsp70/Hsp90 chaperone machinery is involved in the assembly of the purinosome. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 2528–2533.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 2528-2533
    • French, J.B.1
  • 38
    • 84867817085 scopus 로고    scopus 로고
    • Mapping protein-protein proximity in the purinosome
    • 38 Deng, Y., et al. Mapping protein-protein proximity in the purinosome. J. Biol. Chem. 287 (2012), 36201–36207.
    • (2012) J. Biol. Chem. , vol.287 , pp. 36201-36207
    • Deng, Y.1
  • 39
    • 84865677098 scopus 로고    scopus 로고
    • A census of human soluble protein complexes
    • 39 Havugimana, P.C., et al. A census of human soluble protein complexes. Cell 150 (2012), 1068–1081.
    • (2012) Cell , vol.150 , pp. 1068-1081
    • Havugimana, P.C.1
  • 40
    • 84866134921 scopus 로고    scopus 로고
    • A high-throughput approach for measuring temporal changes in the interactome
    • 40 Kristensen, A.R., et al. A high-throughput approach for measuring temporal changes in the interactome. Nat. Methods 9 (2012), 907–909.
    • (2012) Nat. Methods , vol.9 , pp. 907-909
    • Kristensen, A.R.1
  • 41
    • 84942031770 scopus 로고    scopus 로고
    • Panorama of ancient metazoan macromolecular complexes
    • 41 Wan, C., et al. Panorama of ancient metazoan macromolecular complexes. Nature 525 (2015), 339–344.
    • (2015) Nature , vol.525 , pp. 339-344
    • Wan, C.1
  • 42
    • 84921781961 scopus 로고    scopus 로고
    • Dynamic architecture of the purinosome involved in human de novo purine biosynthesis
    • 42 Kyoung, M., et al. Dynamic architecture of the purinosome involved in human de novo purine biosynthesis. Biochemistry 54 (2015), 870–880.
    • (2015) Biochemistry , vol.54 , pp. 870-880
    • Kyoung, M.1
  • 43
    • 84880871430 scopus 로고    scopus 로고
    • Cell cycle regulation of purine synthesis by phosphoribosyl pyrophosphate and inorganic phosphate
    • 43 Fridman, A., et al. Cell cycle regulation of purine synthesis by phosphoribosyl pyrophosphate and inorganic phosphate. Biochem. J. 454 (2013), 91–99.
    • (2013) Biochem. J. , vol.454 , pp. 91-99
    • Fridman, A.1
  • 44
    • 77951224403 scopus 로고    scopus 로고
    • Development and Application of Technologies to Study Individual Kinase Substrate Relationships. In Chemistry and Chemical Biology
    • University of California San Francisco
    • 44 Allen, J.J., Development and Application of Technologies to Study Individual Kinase Substrate Relationships. In Chemistry and Chemical Biology. 2008, University of California, San Francisco.
    • (2008)
    • Allen, J.J.1
  • 45
    • 67349211782 scopus 로고    scopus 로고
    • Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis
    • 45 Salvi, M., et al. Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim. Biophys. Acta 1793 (2009), 847–859.
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 847-859
    • Salvi, M.1
  • 46
    • 84900504578 scopus 로고    scopus 로고
    • Casein kinase: the triple meaning of a misnomer
    • 46 Venerando, A., et al. Casein kinase: the triple meaning of a misnomer. Biochem. J. 460 (2014), 141–156.
    • (2014) Biochem. J. , vol.460 , pp. 141-156
    • Venerando, A.1
  • 47
    • 77951236102 scopus 로고    scopus 로고
    • Dynamic regulation of a metabolic multi-enzyme complex by protein kinase CK2
    • 47 An, S., et al. Dynamic regulation of a metabolic multi-enzyme complex by protein kinase CK2. J. Biol. Chem. 285 (2010), 11093–11099.
    • (2010) J. Biol. Chem. , vol.285 , pp. 11093-11099
    • An, S.1
  • 48
    • 46749145391 scopus 로고    scopus 로고
    • An unbiased evaluation of CK2 inhibitors by chemoproteomics: characterization of inhibitor effects on CK2 and identification of novel inhibitor targets
    • 48 Duncan, J.S., et al. An unbiased evaluation of CK2 inhibitors by chemoproteomics: characterization of inhibitor effects on CK2 and identification of novel inhibitor targets. Mol. Cell. Proteomics 7 (2008), 1077–1088.
    • (2008) Mol. Cell. Proteomics , vol.7 , pp. 1077-1088
    • Duncan, J.S.1
  • 49
    • 63449124343 scopus 로고    scopus 로고
    • The selectivity of inhibitors of protein kinase CK2: an update
    • 49 Pagano, M.A., et al. The selectivity of inhibitors of protein kinase CK2: an update. Biochem. J. 415 (2008), 353–365.
    • (2008) Biochem. J. , vol.415 , pp. 353-365
    • Pagano, M.A.1
  • 50
    • 81355148507 scopus 로고    scopus 로고
    • GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis
    • 50 Verrier, F., et al. GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis. Nat. Chem. Biol. 7 (2011), 909–915.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 909-915
    • Verrier, F.1
  • 51
    • 84881174953 scopus 로고    scopus 로고
    • G-protein-coupled receptor regulation of de novo purine biosynthesis: a novel druggable mechanism
    • 51 Fang, Y., et al. G-protein-coupled receptor regulation of de novo purine biosynthesis: a novel druggable mechanism. Biotechnol. Genet. Eng. Rev. 29 (2013), 31–48.
    • (2013) Biotechnol. Genet. Eng. Rev. , vol.29 , pp. 31-48
    • Fang, Y.1
  • 52
    • 84920455684 scopus 로고    scopus 로고
    • Clinical severity in Lesch-Nyhan disease: the role of residual enzyme and compensatory pathways
    • 52 Fu, R., et al. Clinical severity in Lesch-Nyhan disease: the role of residual enzyme and compensatory pathways. Mol. Genet. Metab. 114 (2015), 55–61.
    • (2015) Mol. Genet. Metab. , vol.114 , pp. 55-61
    • Fu, R.1
  • 53
    • 0019588210 scopus 로고
    • Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase
    • 53 Beeckmans, S., Kanarek, L., Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase. Eur. J. Biochem. 117 (1981), 527–535.
    • (1981) Eur. J. Biochem. , vol.117 , pp. 527-535
    • Beeckmans, S.1    Kanarek, L.2
  • 54
    • 0040777075 scopus 로고    scopus 로고
    • Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon
    • 54 Velot, C., et al. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry 36 (1997), 14271–14276.
    • (1997) Biochemistry , vol.36 , pp. 14271-14276
    • Velot, C.1
  • 55
    • 84922016361 scopus 로고    scopus 로고
    • Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry
    • 55 Wu, F., Minteer, S., Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angew. Chem. 54 (2015), 1851–1854.
    • (2015) Angew. Chem. , vol.54 , pp. 1851-1854
    • Wu, F.1    Minteer, S.2
  • 56
    • 84919933219 scopus 로고    scopus 로고
    • Krebs cycle metabolon formation: metabolite concentration gradient enhanced compartmentation of sequential enzymes
    • 56 Wu, F., et al. Krebs cycle metabolon formation: metabolite concentration gradient enhanced compartmentation of sequential enzymes. Chem. Commun. 51 (2015), 1244–1247.
    • (2015) Chem. Commun. , vol.51 , pp. 1244-1247
    • Wu, F.1
  • 57
    • 77955593994 scopus 로고    scopus 로고
    • Microtubule-assisted mechanism for functional metabolic macromolecular complex formation
    • 57 An, S., et al. Microtubule-assisted mechanism for functional metabolic macromolecular complex formation. Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 12872–12876.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 12872-12876
    • An, S.1
  • 58
    • 84957900736 scopus 로고    scopus 로고
    • Spatial colocalization and functional link of purinosomes with mitochondria
    • 58 French, J.B., et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351 (2016), 733–737.
    • (2016) Science , vol.351 , pp. 733-737
    • French, J.B.1
  • 59
    • 84959141435 scopus 로고    scopus 로고
    • Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism
    • 59 Nikkanen, J., et al. Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism. Cell Metab. 23 (2016), 635–648.
    • (2016) Cell Metab. , vol.23 , pp. 635-648
    • Nikkanen, J.1
  • 60
    • 84975247161 scopus 로고    scopus 로고
    • Mitochondrial dysfunction remodels one-carbon metabolism in human cells
    • 60 Bao, X.R., et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. Elife, 5, 2016, e10575.
    • (2016) Elife , vol.5 , pp. e10575
    • Bao, X.R.1
  • 61
    • 84957899529 scopus 로고    scopus 로고
    • mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle
    • 61 Ben-Sahra, I., et al. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351 (2016), 728–733.
    • (2016) Science , vol.351 , pp. 728-733
    • Ben-Sahra, I.1
  • 62
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • 62 Duvel, K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39 (2010), 171–183.
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Duvel, K.1
  • 63
    • 84858604270 scopus 로고    scopus 로고
    • Metabolic reprogramming: a cancer hallmark even warburg did not anticipate
    • 63 Ward, P.S., Thompson, C.B., Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21 (2012), 297–308.
    • (2012) Cancer Cell , vol.21 , pp. 297-308
    • Ward, P.S.1    Thompson, C.B.2
  • 64
    • 84955326448 scopus 로고    scopus 로고
    • The emerging hallmarks of cancer metabolism
    • 64 Pavlova, N.N., Thompson, C.B., The emerging hallmarks of cancer metabolism. Cell Metab. 23 (2016), 27–47.
    • (2016) Cell Metab. , vol.23 , pp. 27-47
    • Pavlova, N.N.1    Thompson, C.B.2
  • 65
    • 84883550969 scopus 로고    scopus 로고
    • Older and new purine nucleoside analogs for patients with acute leukemias
    • 65 Robak, P., Robak, T., Older and new purine nucleoside analogs for patients with acute leukemias. Cancer Treat. Rev. 39 (2013), 851–861.
    • (2013) Cancer Treat. Rev. , vol.39 , pp. 851-861
    • Robak, P.1    Robak, T.2
  • 66
    • 84943246936 scopus 로고    scopus 로고
    • Metabolic reprogramming: the emerging concept and associated therapeutic strategies
    • 66 Yoshida, G.J., Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J. Exp. Clin. Cancer Res., 34, 2015, 111.
    • (2015) J. Exp. Clin. Cancer Res. , vol.34 , pp. 111
    • Yoshida, G.J.1
  • 67
    • 45849107951 scopus 로고    scopus 로고
    • Clinical pharmacology and pharmacogenetics of thiopurines
    • 67 Sahasranaman, S., et al. Clinical pharmacology and pharmacogenetics of thiopurines. Eur. J. Clin. Pharmacol. 64 (2008), 753–767.
    • (2008) Eur. J. Clin. Pharmacol. , vol.64 , pp. 753-767
    • Sahasranaman, S.1
  • 68
    • 67650685040 scopus 로고    scopus 로고
    • Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer
    • 68 Parker, W.B., Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 109 (2009), 2880–2893.
    • (2009) Chem. Rev. , vol.109 , pp. 2880-2893
    • Parker, W.B.1
  • 69
    • 0023280787 scopus 로고
    • Evidence for direct inhibition of de novo purine synthesis in human MCF-7 breast cells as a principal mode of metabolic inhibition by methotrexate
    • 69 Allegra, C.J., et al. Evidence for direct inhibition of de novo purine synthesis in human MCF-7 breast cells as a principal mode of metabolic inhibition by methotrexate. J. Biol. Chem. 262 (1987), 13520–13526.
    • (1987) J. Biol. Chem. , vol.262 , pp. 13520-13526
    • Allegra, C.J.1
  • 70
    • 0036851697 scopus 로고    scopus 로고
    • Inhibitors of de novo nucleotide biosynthesis as drugs
    • 70 Christopherson, R.I., et al. Inhibitors of de novo nucleotide biosynthesis as drugs. Accounts Chem. Res. 35 (2002), 961–971.
    • (2002) Accounts Chem. Res. , vol.35 , pp. 961-971
    • Christopherson, R.I.1
  • 71
    • 84897414311 scopus 로고    scopus 로고
    • Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer
    • 71 Nilsson, R., et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun., 5, 2014, 3128.
    • (2014) Nat. Commun. , vol.5 , pp. 3128
    • Nilsson, R.1
  • 72
    • 84864011829 scopus 로고    scopus 로고
    • Targeting tumour proliferation with a small-molecule inhibitor of AICAR transformylase homodimerization
    • 72 Spurr, I.B., et al. Targeting tumour proliferation with a small-molecule inhibitor of AICAR transformylase homodimerization. Chembiochem 13 (2012), 1628–1634.
    • (2012) Chembiochem , vol.13 , pp. 1628-1634
    • Spurr, I.B.1
  • 73
    • 84941945817 scopus 로고    scopus 로고
    • Disabling mitochondrial reprogramming in cancer
    • 73 Caino, M.C., Altieri, D.C., Disabling mitochondrial reprogramming in cancer. Pharmacol. Res. 102 (2015), 42–45.
    • (2015) Pharmacol. Res. , vol.102 , pp. 42-45
    • Caino, M.C.1    Altieri, D.C.2
  • 74
    • 84959018571 scopus 로고    scopus 로고
    • Molecular pathways: mitochondrial reprogramming in tumor progression and therapy
    • 74 Caino, M.C., Altieri, D.C., Molecular pathways: mitochondrial reprogramming in tumor progression and therapy. Clin. Cancer Res. 22 (2016), 540–545.
    • (2016) Clin. Cancer Res. , vol.22 , pp. 540-545
    • Caino, M.C.1    Altieri, D.C.2
  • 75
    • 84948079298 scopus 로고    scopus 로고
    • Subcellular functions of proteins under fluorescence single-cell microscopy
    • 75 Kohnhorst, C.L., et al. Subcellular functions of proteins under fluorescence single-cell microscopy. Biochim. Biophys. Acta 1864 (2016), 77–84.
    • (2016) Biochim. Biophys. Acta , vol.1864 , pp. 77-84
    • Kohnhorst, C.L.1
  • 76
  • 77
    • 0019025662 scopus 로고
    • Substrate-induced dissociation of glycerol-3-phosphate dehydrogenase and its complex formation with fructose-bisphosphate aldolase
    • 77 Batke, J., et al. Substrate-induced dissociation of glycerol-3-phosphate dehydrogenase and its complex formation with fructose-bisphosphate aldolase. Eur. J. Biochem. 107 (1980), 389–394.
    • (1980) Eur. J. Biochem. , vol.107 , pp. 389-394
    • Batke, J.1
  • 78
    • 0021795062 scopus 로고
    • Kinetic pathways of formation and dissociation of the glycerol-3-phosphate dehydrogenase-fructose-1,6-bisphosphate aldolase complex
    • 78 Ovadi, J., et al. Kinetic pathways of formation and dissociation of the glycerol-3-phosphate dehydrogenase-fructose-1,6-bisphosphate aldolase complex. Biochem. J. 229 (1985), 57–62.
    • (1985) Biochem. J. , vol.229 , pp. 57-62
    • Ovadi, J.1
  • 79
    • 0021104333 scopus 로고
    • Interaction of the dissociable glycerol-3-phosphate dehydrogenase and fructose-1,6-bisphosphate aldolase. Quantitative analysis by an extrinsic fluorescence probe
    • 79 Ovadi, J., et al. Interaction of the dissociable glycerol-3-phosphate dehydrogenase and fructose-1,6-bisphosphate aldolase. Quantitative analysis by an extrinsic fluorescence probe. Eur. J. Biochem. 133 (1983), 433–437.
    • (1983) Eur. J. Biochem. , vol.133 , pp. 433-437
    • Ovadi, J.1
  • 80
    • 0023244119 scopus 로고
    • A simple approach to detect active-site-directed enzyme-enzyme interactions. The aldolase/glycerol-phosphate-dehydrogenase enzyme system
    • 80 Vertessy, B., Ovadi, J., A simple approach to detect active-site-directed enzyme-enzyme interactions. The aldolase/glycerol-phosphate-dehydrogenase enzyme system. Eur. J. Biochem. 164 (1987), 655–659.
    • (1987) Eur. J. Biochem. , vol.164 , pp. 655-659
    • Vertessy, B.1    Ovadi, J.2
  • 81
    • 0025735063 scopus 로고
    • Modulation of the interaction between aldolase and glycerol-phosphate dehydrogenase by fructose phosphates
    • 81 Vertessy, B.G., et al. Modulation of the interaction between aldolase and glycerol-phosphate dehydrogenase by fructose phosphates. Biochim. Biophys. Acta 1078 (1991), 236–242.
    • (1991) Biochim. Biophys. Acta , vol.1078 , pp. 236-242
    • Vertessy, B.G.1
  • 82
    • 84872351455 scopus 로고    scopus 로고
    • Identification of the components of a glycolytic enzyme metabolon on the human red blood cell membrane
    • 82 Puchulu-Campanella, E., et al. Identification of the components of a glycolytic enzyme metabolon on the human red blood cell membrane. J. Biol. Chem. 288 (2013), 848–858.
    • (2013) J. Biol. Chem. , vol.288 , pp. 848-858
    • Puchulu-Campanella, E.1
  • 83
    • 4043064372 scopus 로고    scopus 로고
    • Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway
    • 83 Evans, D.R., Guy, H.I., Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J. Biol. Chem. 279 (2004), 33035–33038.
    • (2004) J. Biol. Chem. , vol.279 , pp. 33035-33038
    • Evans, D.R.1    Guy, H.I.2
  • 84
    • 84874961313 scopus 로고    scopus 로고
    • Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
    • 84 Robitaille, A.M., et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339 (2013), 1320–1323.
    • (2013) Science , vol.339 , pp. 1320-1323
    • Robitaille, A.M.1
  • 85
    • 33751203862 scopus 로고    scopus 로고
    • SnapShot: cellular bodies
    • 85 Spector, D.L., SnapShot: cellular bodies. Cell, 127, 2006, 1071.
    • (2006) Cell , vol.127 , pp. 1071
    • Spector, D.L.1
  • 86
    • 84957921434 scopus 로고    scopus 로고
    • Cell growth. (TORC)ing up purine biosynthesis
    • 86 Ma, E.H., Jones, R.G., Cell growth. (TORC)ing up purine biosynthesis. Science 351 (2016), 670–671.
    • (2016) Science , vol.351 , pp. 670-671
    • Ma, E.H.1    Jones, R.G.2
  • 87
    • 84897936888 scopus 로고    scopus 로고
    • Label-free drug discovery
    • 87 Fang, Y., Label-free drug discovery. Front. Pharmacol., 5, 2014, 52.
    • (2014) Front. Pharmacol. , vol.5 , pp. 52
    • Fang, Y.1
  • 88
    • 84954608702 scopus 로고    scopus 로고
    • Label-free functional selectivity assays
    • 88 Ferrie, A.M., et al. Label-free functional selectivity assays. Methods Mol. Biol. 1272 (2015), 227–246.
    • (2015) Methods Mol. Biol. , vol.1272 , pp. 227-246
    • Ferrie, A.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.