-
1
-
-
0035895505
-
The sequence of the human genome
-
1 Venter, J.C., Adams, M.D., Myers, E.W., et al. The sequence of the human genome. Science 291 (2001), 1304–1351.
-
(2001)
Science
, vol.291
, pp. 1304-1351
-
-
Venter, J.C.1
Adams, M.D.2
Myers, E.W.3
-
2
-
-
0027751663
-
The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
-
2 Lee, R.C., Feinbaum, R.L., Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75 (1993), 843–854.
-
(1993)
Cell
, vol.75
, pp. 843-854
-
-
Lee, R.C.1
Feinbaum, R.L.2
Ambros, V.3
-
3
-
-
84899658554
-
microRNAs in cardiovascular diseases: current knowledge and the road ahead
-
3 Condorelli, G., Latronico, M.V.G., Cavarretta, E., microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 63 (2014), 2177–2187.
-
(2014)
J Am Coll Cardiol
, vol.63
, pp. 2177-2187
-
-
Condorelli, G.1
Latronico, M.V.G.2
Cavarretta, E.3
-
4
-
-
84925282872
-
From guide to target: molecular insights into eukaryotic RNA-interference machinery
-
4 Ipsaro, J.J., Joshua-Tor, L., From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 22 (2015), 20–28.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 20-28
-
-
Ipsaro, J.J.1
Joshua-Tor, L.2
-
5
-
-
84931572130
-
Towards a molecular understanding of microRNA-mediated gene silencing
-
5 Jonas, S., Izaurralde, E., Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16 (2015), 421–433.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 421-433
-
-
Jonas, S.1
Izaurralde, E.2
-
6
-
-
84899128394
-
Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy
-
6 Bang, C., Batkai, S., Dangwal, S., et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124 (2014), 2136–2146.
-
(2014)
J Clin Invest
, vol.124
, pp. 2136-2146
-
-
Bang, C.1
Batkai, S.2
Dangwal, S.3
-
7
-
-
84856694355
-
MicroRNAs in vascular and metabolic disease
-
7 Zampetaki, A., Mayr, M., MicroRNAs in vascular and metabolic disease. Circ Res 110 (2012), 508–522.
-
(2012)
Circ Res
, vol.110
, pp. 508-522
-
-
Zampetaki, A.1
Mayr, M.2
-
8
-
-
84859892863
-
MicroRNA profiling: approaches and considerations
-
8 Pritchard, C.C., Cheng, H.H., Tewari, M., MicroRNA profiling: approaches and considerations. Nat Rev Genet 13 (2012), 358–369.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 358-369
-
-
Pritchard, C.C.1
Cheng, H.H.2
Tewari, M.3
-
9
-
-
57749195712
-
RNA-Seq: a revolutionary tool for transcriptomics
-
9 Wang, Z., Gerstein, M., Snyder, M., RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10 (2009), 57–63.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 57-63
-
-
Wang, Z.1
Gerstein, M.2
Snyder, M.3
-
10
-
-
84868475728
-
MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles
-
10 van Rooij, E., Olson, E.N., MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 11 (2012), 860–872.
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 860-872
-
-
van Rooij, E.1
Olson, E.N.2
-
11
-
-
84878294979
-
MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors
-
11 Ganesan, J., Ramanujam, D., Sassi, Y., et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 127 (2013), 2097–2106.
-
(2013)
Circulation
, vol.127
, pp. 2097-2106
-
-
Ganesan, J.1
Ramanujam, D.2
Sassi, Y.3
-
12
-
-
84897570851
-
Recombinant AAV as a platform for translating the therapeutic potential of RNA interference
-
12 Borel, F., Kay, M.A., Mueller, C., Recombinant AAV as a platform for translating the therapeutic potential of RNA interference. Mol Ther 22 (2014), 692–701.
-
(2014)
Mol Ther
, vol.22
, pp. 692-701
-
-
Borel, F.1
Kay, M.A.2
Mueller, C.3
-
13
-
-
28444469246
-
Silencing of microRNAs in vivo with ‘antagomirs’
-
13 Krützfeldt, J., Rajewsky, N., Braich, R., et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438 (2005), 685–689.
-
(2005)
Nature
, vol.438
, pp. 685-689
-
-
Krützfeldt, J.1
Rajewsky, N.2
Braich, R.3
-
14
-
-
84877258007
-
Treatment of HCV infection by targeting microRNA
-
14 Janssen, H.L.A., Reesink, H.W., Lawitz, E.J., et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 368 (2013), 1685–1694.
-
(2013)
N Engl J Med
, vol.368
, pp. 1685-1694
-
-
Janssen, H.L.A.1
Reesink, H.W.2
Lawitz, E.J.3
-
15
-
-
84920459959
-
Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways
-
15 Gomez, I.G., MacKenna, D.A., Johnson, B.G., et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 125 (2015), 141–156.
-
(2015)
J Clin Invest
, vol.125
, pp. 141-156
-
-
Gomez, I.G.1
MacKenna, D.A.2
Johnson, B.G.3
-
16
-
-
84863496034
-
RNA mediated Toll-like receptor stimulation in health and disease
-
16 Dalpke, A., Helm, M., RNA mediated Toll-like receptor stimulation in health and disease. RNA Biol 9 (2012), 828–842.
-
(2012)
RNA Biol
, vol.9
, pp. 828-842
-
-
Dalpke, A.1
Helm, M.2
-
17
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
17 Carè, A., Catalucci, D., Felicetti, F., et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 13 (2007), 613–618.
-
(2007)
Nat Med
, vol.13
, pp. 613-618
-
-
Carè, A.1
Catalucci, D.2
Felicetti, F.3
-
18
-
-
84904040454
-
MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade
-
18 Castaldi, A., Zaglia, T., Di Mauro, V., et al. MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade. Circ Res 115 (2014), 273–283.
-
(2014)
Circ Res
, vol.115
, pp. 273-283
-
-
Castaldi, A.1
Zaglia, T.2
Di Mauro, V.3
-
19
-
-
84870595878
-
MyomiR-133 regulates brown fat differentiation through Prdm16
-
19 Trajkovski, M., Ahmed, K., Esau, C.C., et al. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol 14 (2012), 1330–1335.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 1330-1335
-
-
Trajkovski, M.1
Ahmed, K.2
Esau, C.C.3
-
20
-
-
74049096307
-
MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts
-
20 Matkovich, S.J., Wang, W., Tu, Y., et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106 (2010), 166–175.
-
(2010)
Circ Res
, vol.106
, pp. 166-175
-
-
Matkovich, S.J.1
Wang, W.2
Tu, Y.3
-
21
-
-
73449086958
-
Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions
-
21 Elia, L., Contu, R., Quintavalle, M., et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120 (2009), 2377–2385.
-
(2009)
Circulation
, vol.120
, pp. 2377-2385
-
-
Elia, L.1
Contu, R.2
Quintavalle, M.3
-
22
-
-
34147095310
-
The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2
-
22 Yang, B., Lin, H., Xiao, J., et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13 (2007), 486–491.
-
(2007)
Nat Med
, vol.13
, pp. 486-491
-
-
Yang, B.1
Lin, H.2
Xiao, J.3
-
23
-
-
34147153781
-
Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2
-
23 Zhao, Y., Ransom, J.F., Li, A., et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129 (2007), 303–317.
-
(2007)
Cell
, vol.129
, pp. 303-317
-
-
Zhao, Y.1
Ransom, J.F.2
Li, A.3
-
24
-
-
84880816481
-
Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling
-
24 Karakikes, I., Chaanine, A.H., Kang, S., et al. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc, 2, 2013, e000078.
-
(2013)
J Am Heart Assoc
, vol.2
, pp. e000078
-
-
Karakikes, I.1
Chaanine, A.H.2
Kang, S.3
-
25
-
-
10644275373
-
Impact of beta-myosin heavy chain expression on cardiac function during stress
-
25 Krenz, M., Robbins, J., Impact of beta-myosin heavy chain expression on cardiac function during stress. J Am Coll Cardiol 44 (2004), 2390–2397.
-
(2004)
J Am Coll Cardiol
, vol.44
, pp. 2390-2397
-
-
Krenz, M.1
Robbins, J.2
-
26
-
-
34247589595
-
Control of stress-dependent cardiac growth and gene expression by a microRNA
-
26 van Rooij, E., Sutherland, L.B., Qi, X., et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316 (2007), 575–579.
-
(2007)
Science
, vol.316
, pp. 575-579
-
-
van Rooij, E.1
Sutherland, L.B.2
Qi, X.3
-
27
-
-
80053567152
-
Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure
-
27 Montgomery, R.L., Hullinger, T.G., Semus, H.M., et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124 (2011), 1537–1547.
-
(2011)
Circulation
, vol.124
, pp. 1537-1547
-
-
Montgomery, R.L.1
Hullinger, T.G.2
Semus, H.M.3
-
28
-
-
84962834011
-
MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart
-
28 Kakimoto, Y., Tanaka, M., Kamiguchi, H., et al. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart. Int J Cardiol 211 (2016), 43–48.
-
(2016)
Int J Cardiol
, vol.211
, pp. 43-48
-
-
Kakimoto, Y.1
Tanaka, M.2
Kamiguchi, H.3
-
29
-
-
84887251900
-
Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure
-
29 Dirkx, E., Gladka, M.M., Philippen, L.E., et al. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol 15 (2013), 1282–1293.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1282-1293
-
-
Dirkx, E.1
Gladka, M.M.2
Philippen, L.E.3
-
30
-
-
84899482237
-
Inhibition of miR-25 improves cardiac contractility in the failing heart
-
30 Wahlquist, C., Jeong, D., Rojas-Muñoz, A., et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508 (2014), 531–535.
-
(2014)
Nature
, vol.508
, pp. 531-535
-
-
Wahlquist, C.1
Jeong, D.2
Rojas-Muñoz, A.3
-
31
-
-
84871442001
-
Functional screening identifies miRNAs inducing cardiac regeneration
-
31 Eulalio, A., Mano, M., Dal Ferro, M., et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492 (2012), 376–381.
-
(2012)
Nature
, vol.492
, pp. 376-381
-
-
Eulalio, A.1
Mano, M.2
Dal Ferro, M.3
-
32
-
-
84874700585
-
MicroRNA-34a regulates cardiac ageing and function
-
32 Boon, R.A., Iekushi, K., Lechner, S., et al. MicroRNA-34a regulates cardiac ageing and function. Nature 495 (2013), 107–110.
-
(2013)
Nature
, vol.495
, pp. 107-110
-
-
Boon, R.A.1
Iekushi, K.2
Lechner, S.3
-
33
-
-
84894196759
-
Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice
-
33 Loyer, X., Potteaux, S., Vion, A.C., et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 114 (2014), 434–443.
-
(2014)
Circ Res
, vol.114
, pp. 434-443
-
-
Loyer, X.1
Potteaux, S.2
Vion, A.C.3
-
34
-
-
67649998366
-
MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice
-
34 Bonauer, A., Carmona, G., Iwasaki, M., et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324 (2009), 1710–1713.
-
(2009)
Science
, vol.324
, pp. 1710-1713
-
-
Bonauer, A.1
Carmona, G.2
Iwasaki, M.3
-
35
-
-
51349141401
-
Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
-
35 van Rooij, E., Sutherland, L.B., Thatcher, J.E., et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105 (2008), 13027–13032.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 13027-13032
-
-
van Rooij, E.1
Sutherland, L.B.2
Thatcher, J.E.3
-
36
-
-
84887207559
-
Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c
-
36 Abonnenc, M., Nabeebaccus, A.A., Mayr, U., et al. Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ Res 113 (2013), 1138–1147.
-
(2013)
Circ Res
, vol.113
, pp. 1138-1147
-
-
Abonnenc, M.1
Nabeebaccus, A.A.2
Mayr, U.3
-
37
-
-
59849128881
-
miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling
-
37 Duisters, R.F., Tijsen, A.J., Schroen, B., et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104 (2009), 170–178.
-
(2009)
Circ Res
, vol.104
, pp. 170-178
-
-
Duisters, R.F.1
Tijsen, A.J.2
Schroen, B.3
-
38
-
-
84913580883
-
The microRNA-15 family inhibits the TGFβ-pathway in the heart
-
38 Tijsen, A.J., van der Made, I., van den Hoogenhof, M.M., et al. The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc Res 104 (2014), 61–71.
-
(2014)
Cardiovasc Res
, vol.104
, pp. 61-71
-
-
Tijsen, A.J.1
van der Made, I.2
van den Hoogenhof, M.M.3
-
39
-
-
82155163832
-
MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension
-
39 Castoldi, G., di Gioia, C.R.T., Bombardi, C., et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol 227 (2012), 850–856.
-
(2012)
J Cell Physiol
, vol.227
, pp. 850-856
-
-
Castoldi, G.1
di Gioia, C.R.T.2
Bombardi, C.3
-
40
-
-
33845317603
-
A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure
-
40 van Rooij, E., Sutherland, L.B., Liu, N., et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103 (2006), 18255–18260.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 18255-18260
-
-
van Rooij, E.1
Sutherland, L.B.2
Liu, N.3
-
41
-
-
57749168828
-
MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
-
41 Thum, T., Gross, C., Fiedler, J., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456 (2008), 980–984.
-
(2008)
Nature
, vol.456
, pp. 980-984
-
-
Thum, T.1
Gross, C.2
Fiedler, J.3
-
42
-
-
62349141343
-
MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue
-
42 Roy, S., Khanna, S., Hussain, S.R.A., et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82 (2009), 21–29.
-
(2009)
Cardiovasc Res
, vol.82
, pp. 21-29
-
-
Roy, S.1
Khanna, S.2
Hussain, S.R.A.3
-
43
-
-
78049432896
-
Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice
-
43 Patrick, D.M., Montgomery, R.L., Qi, X., et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest 120 (2010), 3912–3916.
-
(2010)
J Clin Invest
, vol.120
, pp. 3912-3916
-
-
Patrick, D.M.1
Montgomery, R.L.2
Qi, X.3
-
44
-
-
34250172419
-
MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation
-
44 Ji, R., Cheng, Y., Yue, J., et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res 100 (2007), 1579–1588.
-
(2007)
Circ Res
, vol.100
, pp. 1579-1588
-
-
Ji, R.1
Cheng, Y.2
Yue, J.3
-
45
-
-
84930019740
-
Reducing in-stent restenosis: therapeutic manipulation of miRNA in vascular remodeling and inflammation
-
45 McDonald, R.A., Halliday, C.A., Miller, A.M., et al. Reducing in-stent restenosis: therapeutic manipulation of miRNA in vascular remodeling and inflammation. J Am Coll Cardiol 65 (2015), 2314–2327.
-
(2015)
J Am Coll Cardiol
, vol.65
, pp. 2314-2327
-
-
McDonald, R.A.1
Halliday, C.A.2
Miller, A.M.3
-
46
-
-
84940398432
-
Local microRNA modulation using a novel anti-miR-21-eluting stent effectively prevents experimental in-stent restenosis
-
46 Wang, D., Deuse, T., Stubbendorff, M., et al. Local microRNA modulation using a novel anti-miR-21-eluting stent effectively prevents experimental in-stent restenosis. Arterioscler Thromb Vasc Biol 35 (2015), 1945–1953.
-
(2015)
Arterioscler Thromb Vasc Biol
, vol.35
, pp. 1945-1953
-
-
Wang, D.1
Deuse, T.2
Stubbendorff, M.3
-
47
-
-
84927716262
-
Role of miR-195 in aortic aneurysmal disease
-
47 Zampetaki, A., Attia, R., Mayr, U., et al. Role of miR-195 in aortic aneurysmal disease. Circ Res 115 (2014), 857–866.
-
(2014)
Circ Res
, vol.115
, pp. 857-866
-
-
Zampetaki, A.1
Attia, R.2
Mayr, U.3
-
48
-
-
84856552278
-
Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development
-
48 Maegdefessel, L., Azuma, J., Toh, R., et al. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest 122 (2012), 497–506.
-
(2012)
J Clin Invest
, vol.122
, pp. 497-506
-
-
Maegdefessel, L.1
Azuma, J.2
Toh, R.3
-
49
-
-
84964715579
-
Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice
-
49 Ulrich, V., Rotllan, N., Araldi, E., et al. Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice. EMBO Mol Med 8 (2016), 643–653.
-
(2016)
EMBO Mol Med
, vol.8
, pp. 643-653
-
-
Ulrich, V.1
Rotllan, N.2
Araldi, E.3
-
50
-
-
68049083397
-
MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation
-
50 Cheng, Y., Liu, X., Yang, J., et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 105 (2009), 158–166.
-
(2009)
Circ Res
, vol.105
, pp. 158-166
-
-
Cheng, Y.1
Liu, X.2
Yang, J.3
-
51
-
-
68449097267
-
miR-145 and miR-143 regulate smooth muscle cell fate and plasticity
-
51 Cordes, K.R., Sheehy, N.T., White, M.P., et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460 (2009), 705–710.
-
(2009)
Nature
, vol.460
, pp. 705-710
-
-
Cordes, K.R.1
Sheehy, N.T.2
White, M.P.3
-
52
-
-
84866464706
-
MicroRNA-145 targeted therapy reduces atherosclerosis
-
52 Lovren, F., Pan, Y., Quan, A., et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation 126 (2012), S81–S90.
-
(2012)
Circulation
, vol.126
, pp. S81-S90
-
-
Lovren, F.1
Pan, Y.2
Quan, A.3
-
53
-
-
48549106378
-
The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis
-
53 Wang, S., Aurora, A.B., Johnson, B.A., et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15 (2008), 261–271.
-
(2008)
Dev Cell
, vol.15
, pp. 261-271
-
-
Wang, S.1
Aurora, A.B.2
Johnson, B.A.3
-
54
-
-
84898419690
-
MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1
-
54 Schober, A., Nazari-Jahantigh, M., Wei, Y., et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 20 (2014), 368–376.
-
(2014)
Nat Med
, vol.20
, pp. 368-376
-
-
Schober, A.1
Nazari-Jahantigh, M.2
Wei, Y.3
-
55
-
-
33645075443
-
miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
-
55 Esau, C., Davis, S., Murray, S.F., et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3 (2006), 87–98.
-
(2006)
Cell Metab
, vol.3
, pp. 87-98
-
-
Esau, C.1
Davis, S.2
Murray, S.F.3
-
56
-
-
85013641196
-
Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease?
-
[E-pub ahead of print] Apr 20
-
56 Willeit, P., Skroblin, P., Kiechl, S., et al. Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease?. Eur Heart J, 2016 Apr 20 [E-pub ahead of print].
-
(2016)
Eur Heart J
-
-
Willeit, P.1
Skroblin, P.2
Kiechl, S.3
-
57
-
-
42249093319
-
LNA-mediated microRNA silencing in non-human primates
-
57 Elmén, J., Lindow, M., Schütz, S., et al. LNA-mediated microRNA silencing in non-human primates. Nature 452 (2008), 896–899.
-
(2008)
Nature
, vol.452
, pp. 896-899
-
-
Elmén, J.1
Lindow, M.2
Schütz, S.3
-
58
-
-
77953787211
-
MiR-33 contributes to the regulation of cholesterol homeostasis
-
58 Rayner, K.J., Suárez, Y., Dávalos, A., et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328 (2010), 1570–1573.
-
(2010)
Science
, vol.328
, pp. 1570-1573
-
-
Rayner, K.J.1
Suárez, Y.2
Dávalos, A.3
-
59
-
-
77953780835
-
MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
-
59 Najafi-Shoushtari, S.H., Kristo, F., Li, Y., et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328 (2010), 1566–1569.
-
(2010)
Science
, vol.328
, pp. 1566-1569
-
-
Najafi-Shoushtari, S.H.1
Kristo, F.2
Li, Y.3
-
60
-
-
84890205234
-
MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice
-
60 Horie, T., Nishino, T., Baba, O., et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun, 4, 2013, 2883.
-
(2013)
Nat Commun
, vol.4
, pp. 2883
-
-
Horie, T.1
Nishino, T.2
Baba, O.3
-
61
-
-
84946203425
-
MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels
-
61 Goedeke, L., Rotllan, N., Canfrán-Duque, A., et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 21 (2015), 1280–1289.
-
(2015)
Nat Med
, vol.21
, pp. 1280-1289
-
-
Goedeke, L.1
Rotllan, N.2
Canfrán-Duque, A.3
-
62
-
-
48749122914
-
Circulating microRNAs as stable blood-based markers for cancer detection
-
62 Mitchell, P.S., Parkin, R.K., Kroh, E.M., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105 (2008), 10513–10518.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 10513-10518
-
-
Mitchell, P.S.1
Parkin, R.K.2
Kroh, E.M.3
-
63
-
-
79953301730
-
MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins
-
63 Vickers, K.C., Palmisano, B.T., Shoucri, B.M., et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13 (2011), 423–433.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 423-433
-
-
Vickers, K.C.1
Palmisano, B.T.2
Shoucri, B.M.3
-
64
-
-
84884490899
-
Activated platelets can deliver mRNA regulatory Ago2·microRNA complexes to endothelial cells via microparticles
-
64 Laffont, B., Corduan, A., Plé, H., et al. Activated platelets can deliver mRNA regulatory Ago2·microRNA complexes to endothelial cells via microparticles. Blood 122 (2013), 253–261.
-
(2013)
Blood
, vol.122
, pp. 253-261
-
-
Laffont, B.1
Corduan, A.2
Plé, H.3
-
65
-
-
84880466686
-
Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression
-
S1-26
-
65 Gidlöf, O., van der Brug, M., Ohman, J., et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 121 (2013), 3908–3917 S1-26.
-
(2013)
Blood
, vol.121
, pp. 3908-3917
-
-
Gidlöf, O.1
van der Brug, M.2
Ohman, J.3
-
66
-
-
84896894879
-
HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells
-
66 Tabet, F., Vickers, K.C., Cuesta Torres, L.F., et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun, 5, 2014, 3292.
-
(2014)
Nat Commun
, vol.5
, pp. 3292
-
-
Tabet, F.1
Vickers, K.C.2
Cuesta Torres, L.F.3
-
67
-
-
84930733661
-
An endocrine genetic signal between blood cells and vascular smooth muscle cells: role of microRNA-223 in smooth muscle function and atherogenesis
-
67 Shan, Z., Qin, S., Li, W., et al. An endocrine genetic signal between blood cells and vascular smooth muscle cells: role of microRNA-223 in smooth muscle function and atherogenesis. J Am Coll Cardiol 65 (2015), 2526–2537.
-
(2015)
J Am Coll Cardiol
, vol.65
, pp. 2526-2537
-
-
Shan, Z.1
Qin, S.2
Li, W.3
-
68
-
-
77954161288
-
Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans
-
68 Wang, G.-K., Zhu, J.-Q., Zhang, J.-T., et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31 (2010), 659–666.
-
(2010)
Eur Heart J
, vol.31
, pp. 659-666
-
-
Wang, G.-K.1
Zhu, J.-Q.2
Zhang, J.-T.3
-
69
-
-
80053230332
-
Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome
-
69 Widera, C., Gupta, S.K., Lorenzen, J.M., et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol 51 (2011), 872–875.
-
(2011)
J Mol Cell Cardiol
, vol.51
, pp. 872-875
-
-
Widera, C.1
Gupta, S.K.2
Lorenzen, J.M.3
-
70
-
-
84895521111
-
Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy
-
70 Roncarati, R., Viviani Anselmi, C., Losi, M.A., et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 63 (2014), 920–927.
-
(2014)
J Am Coll Cardiol
, vol.63
, pp. 920-927
-
-
Roncarati, R.1
Viviani Anselmi, C.2
Losi, M.A.3
-
71
-
-
85016194428
-
Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease—results from the large AtheroGene study
-
[E-pub ahead of print] Jun 29
-
71 Karakas, M., Schulte, C., Appelbaum, S., et al. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease—results from the large AtheroGene study. Eur Heart J, 2016 Jun 29 [E-pub ahead of print].
-
(2016)
Eur Heart J
-
-
Karakas, M.1
Schulte, C.2
Appelbaum, S.3
-
72
-
-
84971425347
-
Circulating microRNAs predict future fatal myocardial infarction in healthy individuals – the HUNT study
-
72 Bye, A., Røsjø, H., Nauman, J., et al. Circulating microRNAs predict future fatal myocardial infarction in healthy individuals – the HUNT study. J Mol Cell Cardiol 97 (2016), 162–168.
-
(2016)
J Mol Cell Cardiol
, vol.97
, pp. 162-168
-
-
Bye, A.1
Røsjø, H.2
Nauman, J.3
-
73
-
-
84863971529
-
Prospective study on circulating microRNAs and risk of myocardial infarction
-
73 Zampetaki, A., Willeit, P., Tilling, L., et al. Prospective study on circulating microRNAs and risk of myocardial infarction. J Am Coll Cardiol 60 (2012), 290–299.
-
(2012)
J Am Coll Cardiol
, vol.60
, pp. 290-299
-
-
Zampetaki, A.1
Willeit, P.2
Tilling, L.3
-
74
-
-
84956963036
-
miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease
-
74 Schulte, C., Molz, S., Appelbaum, S., et al. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS One, 10, 2015, e0145930.
-
(2015)
PLoS One
, vol.10
, pp. e0145930
-
-
Schulte, C.1
Molz, S.2
Appelbaum, S.3
-
75
-
-
84958571478
-
Association of microRNAs and YRNAs with platelet function
-
75 Kaudewitz, D., Skroblin, P., Bender, L.H., et al. Association of microRNAs and YRNAs with platelet function. Circ Res 118 (2016), 420–432.
-
(2016)
Circ Res
, vol.118
, pp. 420-432
-
-
Kaudewitz, D.1
Skroblin, P.2
Bender, L.H.3
-
76
-
-
84937682421
-
Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes
-
76 Elgheznawy, A., Shi, L., Hu, J., et al. Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes. Circ Res 117 (2015), 157–165.
-
(2015)
Circ Res
, vol.117
, pp. 157-165
-
-
Elgheznawy, A.1
Shi, L.2
Hu, J.3
-
77
-
-
84874230935
-
Circulating microRNAs as novel biomarkers for platelet activation
-
77 Willeit, P., Zampetaki, A., Dudek, K., et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ Res 112 (2013), 595–600.
-
(2013)
Circ Res
, vol.112
, pp. 595-600
-
-
Willeit, P.1
Zampetaki, A.2
Dudek, K.3
-
78
-
-
74749096058
-
VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA
-
78 Kondkar, A.A., Bray, M.S., Leal, S.M., et al. VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost 8 (2010), 369–378.
-
(2010)
J Thromb Haemost
, vol.8
, pp. 369-378
-
-
Kondkar, A.A.1
Bray, M.S.2
Leal, S.M.3
-
79
-
-
84922754775
-
Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators
-
79 Flierl, U., Nero, T.L., Lim, B., et al. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. J Exp Med 212 (2015), 129–137.
-
(2015)
J Exp Med
, vol.212
, pp. 129-137
-
-
Flierl, U.1
Nero, T.L.2
Lim, B.3
-
80
-
-
77955384669
-
MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis
-
80 Anand, S., Majeti, B.K., Acevedo, L.M., et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16 (2010), 909–914.
-
(2010)
Nat Med
, vol.16
, pp. 909-914
-
-
Anand, S.1
Majeti, B.K.2
Acevedo, L.M.3
|