메뉴 건너뛰기




Volumn 35, Issue 2, 2017, Pages 159-171

Breaking Down the Barriers to Precision Cancer Nanomedicine

Author keywords

blood brain barrier; drug delivery; mononuclear phagocyte system; nanomedicine; nanoparticles; opsonization; polyethylene glycol

Indexed keywords

CYTOLOGY; DISEASES; DRUG DELIVERY; ENZYME ACTIVITY; NANOPARTICLES; NANOSTRUCTURED MATERIALS; ONCOLOGY; POLYETHYLENE GLYCOLS; SURFACE CHEMISTRY; TUMORS;

EID: 84997831561     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2016.07.006     Document Type: Review
Times cited : (257)

References (98)
  • 1
    • 77954827460 scopus 로고    scopus 로고
    • The path to personalized medicine
    • 1 Hamburg, M.A., Collins, F.S., The path to personalized medicine. N. Eng. J. Med. 363 (2010), 301–304.
    • (2010) N. Eng. J. Med. , vol.363 , pp. 301-304
    • Hamburg, M.A.1    Collins, F.S.2
  • 2
    • 85016350463 scopus 로고    scopus 로고
    • Analysis of nanoparticle delivery to tumours
    • 2 Wilhelm, S.T., et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mat., 1, 2016, 16014.
    • (2016) Nat. Rev. Mat. , vol.1 , pp. 16014
    • Wilhelm, S.T.1
  • 3
    • 78650196945 scopus 로고    scopus 로고
    • Nanomedicine
    • 3 Kim, B.Y.S., et al. Nanomedicine. N. Eng. J. Med., 363, 2010, 2434.
    • (2010) N. Eng. J. Med. , vol.363 , pp. 2434
    • Kim, B.Y.S.1
  • 4
    • 84866557942 scopus 로고    scopus 로고
    • Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors
    • 4 Stylianopoulos, T., et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 15101–15108.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 15101-15108
    • Stylianopoulos, T.1
  • 5
    • 80052808921 scopus 로고    scopus 로고
    • Antibodies in oncology
    • 5 Pillay, V., et al. Antibodies in oncology. Nat. Biotechnol. 28 (2011), 518–529.
    • (2011) Nat. Biotechnol. , vol.28 , pp. 518-529
    • Pillay, V.1
  • 6
    • 84936887301 scopus 로고    scopus 로고
    • Central nervous system toxicity of metallic nanoparticles
    • 6 Feng, X., et al. Central nervous system toxicity of metallic nanoparticles. Int. J. Nanomedicine 10 (2015), 4321–4340.
    • (2015) Int. J. Nanomedicine , vol.10 , pp. 4321-4340
    • Feng, X.1
  • 7
    • 84973866282 scopus 로고    scopus 로고
    • RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction
    • 7 Sager, H.B., et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci. Trans. Med., 8, 2016, 342ra80.
    • (2016) Sci. Trans. Med. , vol.8 , pp. 342ra80
    • Sager, H.B.1
  • 8
    • 84975832642 scopus 로고    scopus 로고
    • Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
    • 8 Kranz, L.M., et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534 (2016), 396–401.
    • (2016) Nature , vol.534 , pp. 396-401
    • Kranz, L.M.1
  • 9
    • 84860722540 scopus 로고    scopus 로고
    • Challenges in development of nanoparticle-based therapeutics
    • 9 Desai, N., Challenges in development of nanoparticle-based therapeutics. AAPS J. 14 (2012), 282–295.
    • (2012) AAPS J. , vol.14 , pp. 282-295
    • Desai, N.1
  • 10
    • 73649133678 scopus 로고    scopus 로고
    • Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction
    • 10 Kim, S., et al. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin. Drug Deliv. 7 (2010), 49–62.
    • (2010) Expert Opin. Drug Deliv. , vol.7 , pp. 49-62
    • Kim, S.1
  • 11
    • 84873564939 scopus 로고    scopus 로고
    • Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface
    • 11 Salvati, A., et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8 (2013), 137–143.
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 137-143
    • Salvati, A.1
  • 12
    • 35148864458 scopus 로고    scopus 로고
    • Renal clearance of quantum dots
    • 12 Choi, H.S., et al. Renal clearance of quantum dots. Nat. Biotechnol. 25 (2007), 1165–1170.
    • (2007) Nat. Biotechnol. , vol.25 , pp. 1165-1170
    • Choi, H.S.1
  • 13
    • 36749031627 scopus 로고    scopus 로고
    • Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications
    • 13 Liu, W., et al. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J. Am. Chem. Soc. 129 (2007), 14530–14531.
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 14530-14531
    • Liu, W.1
  • 14
    • 66749179382 scopus 로고    scopus 로고
    • Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots
    • 14 Choi, H.S., et al. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 9 (2009), 2354–2359.
    • (2009) Nano Lett. , vol.9 , pp. 2354-2359
    • Choi, H.S.1
  • 15
    • 0037362655 scopus 로고    scopus 로고
    • Effect of pegylation on pharmaceuticals
    • 15 Harris, J.M., Chess, R.B., Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2 (2003), 214–221.
    • (2003) Nat. Rev. Drug Discov. , vol.2 , pp. 214-221
    • Harris, J.M.1    Chess, R.B.2
  • 16
    • 84958078423 scopus 로고    scopus 로고
    • Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers
    • 16 Schottler, S., et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11 (2016), 372–377.
    • (2016) Nat. Nanotechnol. , vol.11 , pp. 372-377
    • Schottler, S.1
  • 17
    • 84856436072 scopus 로고    scopus 로고
    • Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake
    • 17 Walkey, D.J., et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134 (2012), 2139–2147.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 2139-2147
    • Walkey, D.J.1
  • 18
    • 84871730525 scopus 로고    scopus 로고
    • Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions
    • 18 Parodi, A., et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8 (2013), 61–68.
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 61-68
    • Parodi, A.1
  • 19
    • 79960583505 scopus 로고    scopus 로고
    • Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform
    • 19 Hu, C.M., et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 10980–10985.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 10980-10985
    • Hu, C.M.1
  • 20
    • 84942901402 scopus 로고    scopus 로고
    • Nanoparticle biointerfacing by platelet membrane cloaking
    • 20 Hu, C.M., et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526 (2015), 118–121.
    • (2015) Nature , vol.526 , pp. 118-121
    • Hu, C.M.1
  • 21
    • 84874169973 scopus 로고    scopus 로고
    • Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles
    • 21 Rodriguez, P.L., et al. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339 (2013), 971–975.
    • (2013) Science , vol.339 , pp. 971-975
    • Rodriguez, P.L.1
  • 22
    • 67650646082 scopus 로고    scopus 로고
    • CD47 is upregulated on circulating hematopoietic stem cells and leukemic cells to avoid phagocytosis
    • 22 Jaiswal, S., et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemic cells to avoid phagocytosis. Cell 138 (2009), 271–285.
    • (2009) Cell , vol.138 , pp. 271-285
    • Jaiswal, S.1
  • 23
    • 84878030500 scopus 로고    scopus 로고
    • Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking
    • 23 Duan, X., Li, Y., Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9 (2013), 1521–1532.
    • (2013) Small , vol.9 , pp. 1521-1532
    • Duan, X.1    Li, Y.2
  • 24
    • 84890318341 scopus 로고    scopus 로고
    • Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology
    • 24 Liu, J.Y., et al. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mat. Today 16 (2013), 477–486.
    • (2013) Mat. Today , vol.16 , pp. 477-486
    • Liu, J.Y.1
  • 25
    • 77955459129 scopus 로고    scopus 로고
    • Paradoxical glomerular filtration of carbon nanotubes
    • 25 Ruggiero, A., et al. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 12369–12374.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 12369-12374
    • Ruggiero, A.1
  • 26
    • 84896504632 scopus 로고    scopus 로고
    • Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles
    • 26 Toy, R., et al. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9 (2014), 121–134.
    • (2014) Nanomedicine , vol.9 , pp. 121-134
    • Toy, R.1
  • 27
    • 79952291790 scopus 로고    scopus 로고
    • Multistage nanoparticle delivery system for deep penetration into tumor tissue
    • 27 Wong, C., et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 2426–2431.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 2426-2431
    • Wong, C.1
  • 28
    • 84875764762 scopus 로고    scopus 로고
    • Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance
    • 28 Liu, J., et al. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 135 (2013), 4978–4981.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 4978-4981
    • Liu, J.1
  • 29
    • 0037459005 scopus 로고    scopus 로고
    • Nasal drug delivery–possibilities, problems and solutions
    • 29 Illum, L., Nasal drug delivery–possibilities, problems and solutions. J. Control Release 87 (2003), 187–198.
    • (2003) J. Control Release , vol.87 , pp. 187-198
    • Illum, L.1
  • 30
    • 84962853255 scopus 로고    scopus 로고
    • CSF, blood-brain barrier, and brain drug delivery
    • 30 Pardridgea, W.M., CSF, blood-brain barrier, and brain drug delivery. Expert Opin. Drug Deliv., 2016, 10.1517/17425247.2016.1171315.
    • (2016) Expert Opin. Drug Deliv.
    • Pardridgea, W.M.1
  • 31
    • 84863952172 scopus 로고    scopus 로고
    • Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques
    • 31 McDannold, N., et al. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res. 72 (2012), 3652–3663.
    • (2012) Cancer Res. , vol.72 , pp. 3652-3663
    • McDannold, N.1
  • 32
    • 84891804917 scopus 로고    scopus 로고
    • Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle
    • 32 Niewoehner, J., et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81 (2014), 49–60.
    • (2014) Neuron , vol.81 , pp. 49-60
    • Niewoehner, J.1
  • 33
    • 84555178913 scopus 로고    scopus 로고
    • Treating metastatic cancer with nanotechnology
    • 33 Schroeder, A., et al. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 12 (2012), 39–50.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 39-50
    • Schroeder, A.1
  • 34
    • 33749025543 scopus 로고    scopus 로고
    • Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model
    • 34 Ambruosi, A., et al. Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J. Microencapsul. 23 (2006), 582–592.
    • (2006) J. Microencapsul. , vol.23 , pp. 582-592
    • Ambruosi, A.1
  • 35
    • 81755172852 scopus 로고    scopus 로고
    • Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging
    • 35 Koffie, R.M., et al. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 18837–18842.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 18837-18842
    • Koffie, R.M.1
  • 36
    • 78149432751 scopus 로고    scopus 로고
    • Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain
    • 36 Zensi, A., et al. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain. J. Drug Target. 18 (2010), 842–848.
    • (2010) J. Drug Target. , vol.18 , pp. 842-848
    • Zensi, A.1
  • 37
    • 67349121612 scopus 로고    scopus 로고
    • Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones
    • 37 Zensi, A., et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control Release 137 (2009), 78–86.
    • (2009) J. Control Release , vol.137 , pp. 78-86
    • Zensi, A.1
  • 38
    • 59649102668 scopus 로고    scopus 로고
    • Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB)
    • 38 Ulbrich, K., et al. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur. J. Pharm. Biopharm. 71 (2009), 251–256.
    • (2009) Eur. J. Pharm. Biopharm. , vol.71 , pp. 251-256
    • Ulbrich, K.1
  • 39
    • 78650538843 scopus 로고    scopus 로고
    • Targeting the insulin receptor: nanoparticles for drug delivery across the blood-brain barrier (BBB)
    • 39 Ulbrich, K., et al. Targeting the insulin receptor: nanoparticles for drug delivery across the blood-brain barrier (BBB). J. Drug Target. 19 (2011), 125–132.
    • (2011) J. Drug Target. , vol.19 , pp. 125-132
    • Ulbrich, K.1
  • 40
    • 59049097859 scopus 로고    scopus 로고
    • Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations
    • 40 Hu, K., et al. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J. Control Release 134 (2009), 55–61.
    • (2009) J. Control Release , vol.134 , pp. 55-61
    • Hu, K.1
  • 41
    • 84901473966 scopus 로고    scopus 로고
    • Drug delivery to the central nervous system by polymeric nanoparticles: what do we know?
    • 41 Kreuter, J., Drug delivery to the central nervous system by polymeric nanoparticles: what do we know?. Adv. Drug Deliv. Rev. 71 (2014), 2–14.
    • (2014) Adv. Drug Deliv. Rev. , vol.71 , pp. 2-14
    • Kreuter, J.1
  • 42
    • 84928713179 scopus 로고    scopus 로고
    • The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model
    • 42 Shilo, M., et al. The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model. J. Nanobiotechnology, 13, 2015, 19.
    • (2015) J. Nanobiotechnology , vol.13 , pp. 19
    • Shilo, M.1
  • 43
    • 84863912661 scopus 로고    scopus 로고
    • TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance
    • 43 Yuan, H., et al. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 134 (2012), 11358–11361.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 11358-11361
    • Yuan, H.1
  • 44
    • 84922324826 scopus 로고    scopus 로고
    • Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles
    • 44 Ruan, S., et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 37 (2015), 425–435.
    • (2015) Biomaterials , vol.37 , pp. 425-435
    • Ruan, S.1
  • 45
    • 33646397592 scopus 로고    scopus 로고
    • Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells
    • 45 Chithrani, B.D., et al. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6 (2006), 662–668.
    • (2006) Nano Lett. , vol.6 , pp. 662-668
    • Chithrani, B.D.1
  • 46
    • 11944265265 scopus 로고    scopus 로고
    • Nanoparticle surface charges alter blood-brain barrier integrity and permeability
    • 46 Lockman, P.R., et al. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target. 12 (2004), 635–641.
    • (2004) J. Drug Target. , vol.12 , pp. 635-641
    • Lockman, P.R.1
  • 47
    • 34848875109 scopus 로고    scopus 로고
    • Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro
    • 47 Jallouli, Y., et al. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int. J. Pharm. 344 (2007), 103–109.
    • (2007) Int. J. Pharm. , vol.344 , pp. 103-109
    • Jallouli, Y.1
  • 48
    • 79551648929 scopus 로고    scopus 로고
    • Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro
    • 48 Georgieva, J.V., et al. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol. Ther. 19 (2011), 318–325.
    • (2011) Mol. Ther. , vol.19 , pp. 318-325
    • Georgieva, J.V.1
  • 49
    • 84893215365 scopus 로고    scopus 로고
    • Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles
    • 49 Raghnaill, M.N., et al. Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles. Analyst 139 (2014), 923–930.
    • (2014) Analyst , vol.139 , pp. 923-930
    • Raghnaill, M.N.1
  • 50
    • 68249161469 scopus 로고    scopus 로고
    • Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches
    • 50 Sharma, H.S., et al. Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J. Nanosci. Nanotechnol. 9 (2009), 5055–5072.
    • (2009) J. Nanosci. Nanotechnol. , vol.9 , pp. 5055-5072
    • Sharma, H.S.1
  • 51
    • 79959790434 scopus 로고    scopus 로고
    • Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways
    • 51 Wu, J., et al. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano. 5 (2011), 4476–4489.
    • (2011) ACS Nano. , vol.5 , pp. 4476-4489
    • Wu, J.1
  • 52
    • 84862833607 scopus 로고    scopus 로고
    • Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats
    • 52 Han, D., et al. Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Int. J. Nanomedicine 6 (2011), 1453–1461.
    • (2011) Int. J. Nanomedicine , vol.6 , pp. 1453-1461
    • Han, D.1
  • 53
    • 70350558453 scopus 로고    scopus 로고
    • Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord
    • 53 Kigerl, K.A., et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29 (2009), 13435–13444.
    • (2009) J. Neurosci. , vol.29 , pp. 13435-13444
    • Kigerl, K.A.1
  • 54
    • 77952932220 scopus 로고    scopus 로고
    • Microglial response to gold nanoparticles
    • 54 Hutter, E., et al. Microglial response to gold nanoparticles. ACS Nano. 4 (2010), 2595–2606.
    • (2010) ACS Nano. , vol.4 , pp. 2595-2606
    • Hutter, E.1
  • 55
    • 84888196375 scopus 로고    scopus 로고
    • Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury
    • 55 Papa, S., et al. Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. J. Control Release 174 (2014), 15–26.
    • (2014) J. Control Release , vol.174 , pp. 15-26
    • Papa, S.1
  • 56
    • 36849067019 scopus 로고    scopus 로고
    • Nanocarriers as an emerging platform for cancer therapy
    • 56 Peer, D., et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2 (2007), 751–760.
    • (2007) Nat. Nanotechnol. , vol.2 , pp. 751-760
    • Peer, D.1
  • 57
    • 84941066997 scopus 로고    scopus 로고
    • Principles of nanoparticle design for overcoming biological barriers to drug delivery
    • 57 Blanco, E., et al. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33 (2015), 941–951.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 941-951
    • Blanco, E.1
  • 58
    • 84894568529 scopus 로고    scopus 로고
    • Lymphangiogenesis and lymphatic vessel remodelling in cancer
    • 58 Stacker, S.A., et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer 14 (2014), 159–172.
    • (2014) Nat. Rev. Cancer , vol.14 , pp. 159-172
    • Stacker, S.A.1
  • 59
    • 81255188940 scopus 로고    scopus 로고
    • Tumor angiogenesis: molecular pathways and therapeutic targets
    • 59 Weis, S.M., Cheresh, D.A., Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17 (2011), 1359–1370.
    • (2011) Nat. Med. , vol.17 , pp. 1359-1370
    • Weis, S.M.1    Cheresh, D.A.2
  • 60
    • 84886310583 scopus 로고    scopus 로고
    • Strategies for advancing cancer nanomedicine
    • 60 Chauhan, V.P., Jain, R.K., Strategies for advancing cancer nanomedicine. Nat. Mater. 12 (2013), 958–962.
    • (2013) Nat. Mater. , vol.12 , pp. 958-962
    • Chauhan, V.P.1    Jain, R.K.2
  • 61
    • 84959421064 scopus 로고    scopus 로고
    • Tailoring nanoparticle designs to target cancer based on tumor pathophysiology
    • 61 Sykes, E.A., et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc. Natl. Acad. Sci. U.S.A. 113 (2016), E1142–E1151.
    • (2016) Proc. Natl. Acad. Sci. U.S.A. , vol.113 , pp. E1142-E1151
    • Sykes, E.A.1
  • 62
  • 63
    • 84863655863 scopus 로고    scopus 로고
    • Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner
    • 63 Chauhan, V.P., et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7 (2012), 383–388.
    • (2012) Nat. Nanotechnol. , vol.7 , pp. 383-388
    • Chauhan, V.P.1
  • 64
    • 84942265260 scopus 로고    scopus 로고
    • Remodeling tumor vasculature to enhance delivery of intermediate-sized nanoparticles
    • 64 Jiang, W., et al. Remodeling tumor vasculature to enhance delivery of intermediate-sized nanoparticles. ACS Nano. 9 (2015), 8689–8696.
    • (2015) ACS Nano. , vol.9 , pp. 8689-8696
    • Jiang, W.1
  • 65
    • 83555166219 scopus 로고    scopus 로고
    • Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size
    • 65 Cabral, H., et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6 (2011), 815–823.
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 815-823
    • Cabral, H.1
  • 66
    • 77949632782 scopus 로고    scopus 로고
    • Frontiers in cancer nanomedicine: directing mass transport through biological barriers
    • 66 Ferrari, M., Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol. 28 (2010), 181–188.
    • (2010) Trends Biotechnol. , vol.28 , pp. 181-188
    • Ferrari, M.1
  • 67
    • 40449122225 scopus 로고    scopus 로고
    • Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications
    • 67 Tasciotti, E., et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3 (2008), 151–157.
    • (2008) Nat. Nanotechnol. , vol.3 , pp. 151-157
    • Tasciotti, E.1
  • 68
    • 84959017342 scopus 로고    scopus 로고
    • DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction
    • 68 Ohta, S., et al. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science 351 (2016), 841–845.
    • (2016) Science , vol.351 , pp. 841-845
    • Ohta, S.1
  • 69
    • 84957597392 scopus 로고    scopus 로고
    • Transmutable nanoparticles with reconfigurable surface ligands
    • 69 Kim, Y., et al. Transmutable nanoparticles with reconfigurable surface ligands. Science 351 (2016), 579–582.
    • (2016) Science , vol.351 , pp. 579-582
    • Kim, Y.1
  • 70
    • 84858766182 scopus 로고    scopus 로고
    • The blockade of immune checkpoints in cancer immunotherapy
    • 70 Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12 (2012), 252–264.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 252-264
    • Pardoll, D.M.1
  • 71
    • 84928761118 scopus 로고    scopus 로고
    • Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer
    • 71 Rizvi, N.A., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348 (2015), 124–128.
    • (2015) Science , vol.348 , pp. 124-128
    • Rizvi, N.A.1
  • 72
    • 85047692172 scopus 로고    scopus 로고
    • Therapeutic vaccines for cancer: an overview of clinical trials
    • 72 Melero, I., et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11 (2014), 509–524.
    • (2014) Nat. Rev. Clin. Oncol. , vol.11 , pp. 509-524
    • Melero, I.1
  • 73
    • 80052270541 scopus 로고    scopus 로고
    • Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations
    • 73 Hamdy, S., et al. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv. Drug Deliv. Rev. 63 (2011), 943–955.
    • (2011) Adv. Drug Deliv. Rev. , vol.63 , pp. 943-955
    • Hamdy, S.1
  • 74
    • 84884676871 scopus 로고    scopus 로고
    • Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination
    • 74 Li, A.V., et al. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Science Trans. Med., 5, 2013, 204ra130.
    • (2013) Science Trans. Med. , vol.5 , pp. 204ra130
    • Li, A.V.1
  • 75
    • 84871956263 scopus 로고    scopus 로고
    • Biodegradable particles as vaccine delivery systems: size matters
    • 75 Joshi, V.B., et al. Biodegradable particles as vaccine delivery systems: size matters. AAPS J. 15 (2013), 85–94.
    • (2013) AAPS J. , vol.15 , pp. 85-94
    • Joshi, V.B.1
  • 76
    • 21344448185 scopus 로고    scopus 로고
    • Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model
    • 76 Foged, C., et al. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298 (2005), 315–322.
    • (2005) Int. J. Pharm. , vol.298 , pp. 315-322
    • Foged, C.1
  • 77
    • 33748137709 scopus 로고    scopus 로고
    • Stable cationic microparticles for enhanced model antigen delivery to dendritic cells
    • 77 Wischke, C., et al. Stable cationic microparticles for enhanced model antigen delivery to dendritic cells. J. Control Release 114 (2006), 359–368.
    • (2006) J. Control Release , vol.114 , pp. 359-368
    • Wischke, C.1
  • 78
    • 79956114010 scopus 로고    scopus 로고
    • Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines
    • 78 Demento, S.L., et al. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol. 29 (2011), 294–306.
    • (2011) Trends Biotechnol. , vol.29 , pp. 294-306
    • Demento, S.L.1
  • 79
    • 79956159643 scopus 로고    scopus 로고
    • The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses
    • 79 Ma, Y., et al. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses. Nanoscale 3 (2011), 2307–2314.
    • (2011) Nanoscale , vol.3 , pp. 2307-2314
    • Ma, Y.1
  • 81
    • 84864258079 scopus 로고    scopus 로고
    • The effect of nanoparticle size, shape, and surface chemistry on biological systems
    • 81 Albanese, A., et al. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann. Rev. Biomed. Eng. 14 (2012), 1–16.
    • (2012) Ann. Rev. Biomed. Eng. , vol.14 , pp. 1-16
    • Albanese, A.1
  • 82
    • 84878326767 scopus 로고    scopus 로고
    • Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo
    • 82 Niikura, K., et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 7 (2013), 3926–3938.
    • (2013) ACS Nano. , vol.7 , pp. 3926-3938
    • Niikura, K.1
  • 83
    • 68949208465 scopus 로고    scopus 로고
    • Nanocarriers’ entry into the cell: relevance to drug delivery
    • 83 Hillaireau, H., Couvreur, P., Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol. Life Sci. 66 (2009), 2873–2896.
    • (2009) Cell Mol. Life Sci. , vol.66 , pp. 2873-2896
    • Hillaireau, H.1    Couvreur, P.2
  • 84
    • 84857888962 scopus 로고    scopus 로고
    • Nanoparticle hydrophobicity dictates immune response
    • 84 Moyano, D.F., et al. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc. 134 (2012), 3965–3967.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 3965-3967
    • Moyano, D.F.1
  • 85
    • 84942870944 scopus 로고    scopus 로고
    • Hybrid nanoparticles improve targeting to inflammatory macrophages through phagocytic signals
    • 85 Bagalkot, V., et al. Hybrid nanoparticles improve targeting to inflammatory macrophages through phagocytic signals. J. Control Release 217 (2015), 243–255.
    • (2015) J. Control Release , vol.217 , pp. 243-255
    • Bagalkot, V.1
  • 86
    • 84883567844 scopus 로고    scopus 로고
    • Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles
    • 86 Zhu, S., et al. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol. Pharm. 10 (2013), 3525–3530.
    • (2013) Mol. Pharm. , vol.10 , pp. 3525-3530
    • Zhu, S.1
  • 87
    • 84970029114 scopus 로고    scopus 로고
    • Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes
    • 87 Qie, Y., et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci. Rep., 6, 2016, 26269.
    • (2016) Sci. Rep. , vol.6 , pp. 26269
    • Qie, Y.1
  • 88
    • 84944228684 scopus 로고    scopus 로고
    • Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen
    • 88 Saluja, S.S., et al. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int. J. Nanomedicine 9 (2014), 5231–5246.
    • (2014) Int. J. Nanomedicine , vol.9 , pp. 5231-5246
    • Saluja, S.S.1
  • 89
    • 84871650149 scopus 로고    scopus 로고
    • Construction and characterization of virus-like particles: a review
    • 89 Zeltins, A., Construction and characterization of virus-like particles: a review. Mol. Biotechnol. 53 (2013), 92–107.
    • (2013) Mol. Biotechnol. , vol.53 , pp. 92-107
    • Zeltins, A.1
  • 90
    • 84870540478 scopus 로고    scopus 로고
    • Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development
    • 90 Kushnir, N., et al. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31 (2012), 58–83.
    • (2012) Vaccine , vol.31 , pp. 58-83
    • Kushnir, N.1
  • 91
    • 84960114076 scopus 로고    scopus 로고
    • In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer
    • 91 Lizotte, P.H., et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol. 11 (2016), 295–303.
    • (2016) Nat. Nanotechnol. , vol.11 , pp. 295-303
    • Lizotte, P.H.1
  • 92
    • 84960510061 scopus 로고    scopus 로고
    • Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles
    • 92 Lebel, M.E., et al. Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles. Nano Lett. 16 (2016), 1826–1832.
    • (2016) Nano Lett. , vol.16 , pp. 1826-1832
    • Lebel, M.E.1
  • 93
    • 84923340342 scopus 로고    scopus 로고
    • Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody
    • 93 Jobsri, J., et al. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody. PLoS ONE, 10, 2015, e0118096.
    • (2015) PLoS ONE , vol.10 , pp. e0118096
    • Jobsri, J.1
  • 94
    • 84969852215 scopus 로고    scopus 로고
    • Three-dimensional optical mapping of nanoparticle distribution in intact tissues
    • 94 Sindhwani, S., et al. Three-dimensional optical mapping of nanoparticle distribution in intact tissues. ACS Nano. 10 (2016), 5468–5478.
    • (2016) ACS Nano. , vol.10 , pp. 5468-5478
    • Sindhwani, S.1
  • 95
    • 34248402413 scopus 로고    scopus 로고
    • Shape effects of filaments versus spherical particles in flow and drug delivery
    • 95 Geng, Y., et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2 (2007), 249–255.
    • (2007) Nat. Nanotechnol. , vol.2 , pp. 249-255
    • Geng, Y.1
  • 96
    • 34547690726 scopus 로고    scopus 로고
    • Immunological properties of engineered nanomaterials
    • 96 Dobrovolskaia, M.A., McNeil, S.E., Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2 (2007), 469–478.
    • (2007) Nat. Nanotechnol. , vol.2 , pp. 469-478
    • Dobrovolskaia, M.A.1    McNeil, S.E.2
  • 97
    • 84885483569 scopus 로고    scopus 로고
    • Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology
    • 97 Tenzer, S., et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8 (2013), 772–781.
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 772-781
    • Tenzer, S.1
  • 98
    • 84864241697 scopus 로고    scopus 로고
    • Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells
    • 98 Lesniak, A., et al. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 6 (2012), 5845–5857.
    • (2012) ACS Nano. , vol.6 , pp. 5845-5857
    • Lesniak, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.