-
1
-
-
77954827460
-
The path to personalized medicine
-
1 Hamburg, M.A., Collins, F.S., The path to personalized medicine. N. Eng. J. Med. 363 (2010), 301–304.
-
(2010)
N. Eng. J. Med.
, vol.363
, pp. 301-304
-
-
Hamburg, M.A.1
Collins, F.S.2
-
2
-
-
85016350463
-
Analysis of nanoparticle delivery to tumours
-
2 Wilhelm, S.T., et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mat., 1, 2016, 16014.
-
(2016)
Nat. Rev. Mat.
, vol.1
, pp. 16014
-
-
Wilhelm, S.T.1
-
3
-
-
78650196945
-
Nanomedicine
-
3 Kim, B.Y.S., et al. Nanomedicine. N. Eng. J. Med., 363, 2010, 2434.
-
(2010)
N. Eng. J. Med.
, vol.363
, pp. 2434
-
-
Kim, B.Y.S.1
-
4
-
-
84866557942
-
Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors
-
4 Stylianopoulos, T., et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 15101–15108.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 15101-15108
-
-
Stylianopoulos, T.1
-
5
-
-
80052808921
-
Antibodies in oncology
-
5 Pillay, V., et al. Antibodies in oncology. Nat. Biotechnol. 28 (2011), 518–529.
-
(2011)
Nat. Biotechnol.
, vol.28
, pp. 518-529
-
-
Pillay, V.1
-
6
-
-
84936887301
-
Central nervous system toxicity of metallic nanoparticles
-
6 Feng, X., et al. Central nervous system toxicity of metallic nanoparticles. Int. J. Nanomedicine 10 (2015), 4321–4340.
-
(2015)
Int. J. Nanomedicine
, vol.10
, pp. 4321-4340
-
-
Feng, X.1
-
7
-
-
84973866282
-
RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction
-
7 Sager, H.B., et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci. Trans. Med., 8, 2016, 342ra80.
-
(2016)
Sci. Trans. Med.
, vol.8
, pp. 342ra80
-
-
Sager, H.B.1
-
8
-
-
84975832642
-
Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
-
8 Kranz, L.M., et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534 (2016), 396–401.
-
(2016)
Nature
, vol.534
, pp. 396-401
-
-
Kranz, L.M.1
-
9
-
-
84860722540
-
Challenges in development of nanoparticle-based therapeutics
-
9 Desai, N., Challenges in development of nanoparticle-based therapeutics. AAPS J. 14 (2012), 282–295.
-
(2012)
AAPS J.
, vol.14
, pp. 282-295
-
-
Desai, N.1
-
10
-
-
73649133678
-
Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction
-
10 Kim, S., et al. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin. Drug Deliv. 7 (2010), 49–62.
-
(2010)
Expert Opin. Drug Deliv.
, vol.7
, pp. 49-62
-
-
Kim, S.1
-
11
-
-
84873564939
-
Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface
-
11 Salvati, A., et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8 (2013), 137–143.
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 137-143
-
-
Salvati, A.1
-
12
-
-
35148864458
-
Renal clearance of quantum dots
-
12 Choi, H.S., et al. Renal clearance of quantum dots. Nat. Biotechnol. 25 (2007), 1165–1170.
-
(2007)
Nat. Biotechnol.
, vol.25
, pp. 1165-1170
-
-
Choi, H.S.1
-
13
-
-
36749031627
-
Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications
-
13 Liu, W., et al. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J. Am. Chem. Soc. 129 (2007), 14530–14531.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 14530-14531
-
-
Liu, W.1
-
14
-
-
66749179382
-
Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots
-
14 Choi, H.S., et al. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 9 (2009), 2354–2359.
-
(2009)
Nano Lett.
, vol.9
, pp. 2354-2359
-
-
Choi, H.S.1
-
15
-
-
0037362655
-
Effect of pegylation on pharmaceuticals
-
15 Harris, J.M., Chess, R.B., Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2 (2003), 214–221.
-
(2003)
Nat. Rev. Drug Discov.
, vol.2
, pp. 214-221
-
-
Harris, J.M.1
Chess, R.B.2
-
16
-
-
84958078423
-
Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers
-
16 Schottler, S., et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11 (2016), 372–377.
-
(2016)
Nat. Nanotechnol.
, vol.11
, pp. 372-377
-
-
Schottler, S.1
-
17
-
-
84856436072
-
Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake
-
17 Walkey, D.J., et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134 (2012), 2139–2147.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 2139-2147
-
-
Walkey, D.J.1
-
18
-
-
84871730525
-
Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions
-
18 Parodi, A., et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8 (2013), 61–68.
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 61-68
-
-
Parodi, A.1
-
19
-
-
79960583505
-
Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform
-
19 Hu, C.M., et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 10980–10985.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 10980-10985
-
-
Hu, C.M.1
-
20
-
-
84942901402
-
Nanoparticle biointerfacing by platelet membrane cloaking
-
20 Hu, C.M., et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526 (2015), 118–121.
-
(2015)
Nature
, vol.526
, pp. 118-121
-
-
Hu, C.M.1
-
21
-
-
84874169973
-
Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles
-
21 Rodriguez, P.L., et al. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339 (2013), 971–975.
-
(2013)
Science
, vol.339
, pp. 971-975
-
-
Rodriguez, P.L.1
-
22
-
-
67650646082
-
CD47 is upregulated on circulating hematopoietic stem cells and leukemic cells to avoid phagocytosis
-
22 Jaiswal, S., et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemic cells to avoid phagocytosis. Cell 138 (2009), 271–285.
-
(2009)
Cell
, vol.138
, pp. 271-285
-
-
Jaiswal, S.1
-
23
-
-
84878030500
-
Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking
-
23 Duan, X., Li, Y., Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9 (2013), 1521–1532.
-
(2013)
Small
, vol.9
, pp. 1521-1532
-
-
Duan, X.1
Li, Y.2
-
24
-
-
84890318341
-
Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology
-
24 Liu, J.Y., et al. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mat. Today 16 (2013), 477–486.
-
(2013)
Mat. Today
, vol.16
, pp. 477-486
-
-
Liu, J.Y.1
-
25
-
-
77955459129
-
Paradoxical glomerular filtration of carbon nanotubes
-
25 Ruggiero, A., et al. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 12369–12374.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 12369-12374
-
-
Ruggiero, A.1
-
26
-
-
84896504632
-
Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles
-
26 Toy, R., et al. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9 (2014), 121–134.
-
(2014)
Nanomedicine
, vol.9
, pp. 121-134
-
-
Toy, R.1
-
27
-
-
79952291790
-
Multistage nanoparticle delivery system for deep penetration into tumor tissue
-
27 Wong, C., et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 2426–2431.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 2426-2431
-
-
Wong, C.1
-
28
-
-
84875764762
-
Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance
-
28 Liu, J., et al. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 135 (2013), 4978–4981.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 4978-4981
-
-
Liu, J.1
-
29
-
-
0037459005
-
Nasal drug delivery–possibilities, problems and solutions
-
29 Illum, L., Nasal drug delivery–possibilities, problems and solutions. J. Control Release 87 (2003), 187–198.
-
(2003)
J. Control Release
, vol.87
, pp. 187-198
-
-
Illum, L.1
-
30
-
-
84962853255
-
CSF, blood-brain barrier, and brain drug delivery
-
30 Pardridgea, W.M., CSF, blood-brain barrier, and brain drug delivery. Expert Opin. Drug Deliv., 2016, 10.1517/17425247.2016.1171315.
-
(2016)
Expert Opin. Drug Deliv.
-
-
Pardridgea, W.M.1
-
31
-
-
84863952172
-
Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques
-
31 McDannold, N., et al. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res. 72 (2012), 3652–3663.
-
(2012)
Cancer Res.
, vol.72
, pp. 3652-3663
-
-
McDannold, N.1
-
32
-
-
84891804917
-
Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle
-
32 Niewoehner, J., et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81 (2014), 49–60.
-
(2014)
Neuron
, vol.81
, pp. 49-60
-
-
Niewoehner, J.1
-
33
-
-
84555178913
-
Treating metastatic cancer with nanotechnology
-
33 Schroeder, A., et al. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 12 (2012), 39–50.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 39-50
-
-
Schroeder, A.1
-
34
-
-
33749025543
-
Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model
-
34 Ambruosi, A., et al. Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J. Microencapsul. 23 (2006), 582–592.
-
(2006)
J. Microencapsul.
, vol.23
, pp. 582-592
-
-
Ambruosi, A.1
-
35
-
-
81755172852
-
Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging
-
35 Koffie, R.M., et al. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 18837–18842.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 18837-18842
-
-
Koffie, R.M.1
-
36
-
-
78149432751
-
Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain
-
36 Zensi, A., et al. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain. J. Drug Target. 18 (2010), 842–848.
-
(2010)
J. Drug Target.
, vol.18
, pp. 842-848
-
-
Zensi, A.1
-
37
-
-
67349121612
-
Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones
-
37 Zensi, A., et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control Release 137 (2009), 78–86.
-
(2009)
J. Control Release
, vol.137
, pp. 78-86
-
-
Zensi, A.1
-
38
-
-
59649102668
-
Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB)
-
38 Ulbrich, K., et al. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur. J. Pharm. Biopharm. 71 (2009), 251–256.
-
(2009)
Eur. J. Pharm. Biopharm.
, vol.71
, pp. 251-256
-
-
Ulbrich, K.1
-
39
-
-
78650538843
-
Targeting the insulin receptor: nanoparticles for drug delivery across the blood-brain barrier (BBB)
-
39 Ulbrich, K., et al. Targeting the insulin receptor: nanoparticles for drug delivery across the blood-brain barrier (BBB). J. Drug Target. 19 (2011), 125–132.
-
(2011)
J. Drug Target.
, vol.19
, pp. 125-132
-
-
Ulbrich, K.1
-
40
-
-
59049097859
-
Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations
-
40 Hu, K., et al. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J. Control Release 134 (2009), 55–61.
-
(2009)
J. Control Release
, vol.134
, pp. 55-61
-
-
Hu, K.1
-
41
-
-
84901473966
-
Drug delivery to the central nervous system by polymeric nanoparticles: what do we know?
-
41 Kreuter, J., Drug delivery to the central nervous system by polymeric nanoparticles: what do we know?. Adv. Drug Deliv. Rev. 71 (2014), 2–14.
-
(2014)
Adv. Drug Deliv. Rev.
, vol.71
, pp. 2-14
-
-
Kreuter, J.1
-
42
-
-
84928713179
-
The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model
-
42 Shilo, M., et al. The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model. J. Nanobiotechnology, 13, 2015, 19.
-
(2015)
J. Nanobiotechnology
, vol.13
, pp. 19
-
-
Shilo, M.1
-
43
-
-
84863912661
-
TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance
-
43 Yuan, H., et al. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 134 (2012), 11358–11361.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 11358-11361
-
-
Yuan, H.1
-
44
-
-
84922324826
-
Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles
-
44 Ruan, S., et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 37 (2015), 425–435.
-
(2015)
Biomaterials
, vol.37
, pp. 425-435
-
-
Ruan, S.1
-
45
-
-
33646397592
-
Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells
-
45 Chithrani, B.D., et al. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6 (2006), 662–668.
-
(2006)
Nano Lett.
, vol.6
, pp. 662-668
-
-
Chithrani, B.D.1
-
46
-
-
11944265265
-
Nanoparticle surface charges alter blood-brain barrier integrity and permeability
-
46 Lockman, P.R., et al. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target. 12 (2004), 635–641.
-
(2004)
J. Drug Target.
, vol.12
, pp. 635-641
-
-
Lockman, P.R.1
-
47
-
-
34848875109
-
Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro
-
47 Jallouli, Y., et al. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int. J. Pharm. 344 (2007), 103–109.
-
(2007)
Int. J. Pharm.
, vol.344
, pp. 103-109
-
-
Jallouli, Y.1
-
48
-
-
79551648929
-
Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro
-
48 Georgieva, J.V., et al. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol. Ther. 19 (2011), 318–325.
-
(2011)
Mol. Ther.
, vol.19
, pp. 318-325
-
-
Georgieva, J.V.1
-
49
-
-
84893215365
-
Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles
-
49 Raghnaill, M.N., et al. Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles. Analyst 139 (2014), 923–930.
-
(2014)
Analyst
, vol.139
, pp. 923-930
-
-
Raghnaill, M.N.1
-
50
-
-
68249161469
-
Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches
-
50 Sharma, H.S., et al. Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J. Nanosci. Nanotechnol. 9 (2009), 5055–5072.
-
(2009)
J. Nanosci. Nanotechnol.
, vol.9
, pp. 5055-5072
-
-
Sharma, H.S.1
-
51
-
-
79959790434
-
Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways
-
51 Wu, J., et al. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano. 5 (2011), 4476–4489.
-
(2011)
ACS Nano.
, vol.5
, pp. 4476-4489
-
-
Wu, J.1
-
52
-
-
84862833607
-
Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats
-
52 Han, D., et al. Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Int. J. Nanomedicine 6 (2011), 1453–1461.
-
(2011)
Int. J. Nanomedicine
, vol.6
, pp. 1453-1461
-
-
Han, D.1
-
53
-
-
70350558453
-
Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord
-
53 Kigerl, K.A., et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29 (2009), 13435–13444.
-
(2009)
J. Neurosci.
, vol.29
, pp. 13435-13444
-
-
Kigerl, K.A.1
-
54
-
-
77952932220
-
Microglial response to gold nanoparticles
-
54 Hutter, E., et al. Microglial response to gold nanoparticles. ACS Nano. 4 (2010), 2595–2606.
-
(2010)
ACS Nano.
, vol.4
, pp. 2595-2606
-
-
Hutter, E.1
-
55
-
-
84888196375
-
Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury
-
55 Papa, S., et al. Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. J. Control Release 174 (2014), 15–26.
-
(2014)
J. Control Release
, vol.174
, pp. 15-26
-
-
Papa, S.1
-
56
-
-
36849067019
-
Nanocarriers as an emerging platform for cancer therapy
-
56 Peer, D., et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2 (2007), 751–760.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 751-760
-
-
Peer, D.1
-
57
-
-
84941066997
-
Principles of nanoparticle design for overcoming biological barriers to drug delivery
-
57 Blanco, E., et al. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33 (2015), 941–951.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 941-951
-
-
Blanco, E.1
-
58
-
-
84894568529
-
Lymphangiogenesis and lymphatic vessel remodelling in cancer
-
58 Stacker, S.A., et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer 14 (2014), 159–172.
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 159-172
-
-
Stacker, S.A.1
-
59
-
-
81255188940
-
Tumor angiogenesis: molecular pathways and therapeutic targets
-
59 Weis, S.M., Cheresh, D.A., Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17 (2011), 1359–1370.
-
(2011)
Nat. Med.
, vol.17
, pp. 1359-1370
-
-
Weis, S.M.1
Cheresh, D.A.2
-
60
-
-
84886310583
-
Strategies for advancing cancer nanomedicine
-
60 Chauhan, V.P., Jain, R.K., Strategies for advancing cancer nanomedicine. Nat. Mater. 12 (2013), 958–962.
-
(2013)
Nat. Mater.
, vol.12
, pp. 958-962
-
-
Chauhan, V.P.1
Jain, R.K.2
-
61
-
-
84959421064
-
Tailoring nanoparticle designs to target cancer based on tumor pathophysiology
-
61 Sykes, E.A., et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc. Natl. Acad. Sci. U.S.A. 113 (2016), E1142–E1151.
-
(2016)
Proc. Natl. Acad. Sci. U.S.A.
, vol.113
, pp. E1142-E1151
-
-
Sykes, E.A.1
-
63
-
-
84863655863
-
Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner
-
63 Chauhan, V.P., et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7 (2012), 383–388.
-
(2012)
Nat. Nanotechnol.
, vol.7
, pp. 383-388
-
-
Chauhan, V.P.1
-
64
-
-
84942265260
-
Remodeling tumor vasculature to enhance delivery of intermediate-sized nanoparticles
-
64 Jiang, W., et al. Remodeling tumor vasculature to enhance delivery of intermediate-sized nanoparticles. ACS Nano. 9 (2015), 8689–8696.
-
(2015)
ACS Nano.
, vol.9
, pp. 8689-8696
-
-
Jiang, W.1
-
65
-
-
83555166219
-
Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size
-
65 Cabral, H., et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6 (2011), 815–823.
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 815-823
-
-
Cabral, H.1
-
66
-
-
77949632782
-
Frontiers in cancer nanomedicine: directing mass transport through biological barriers
-
66 Ferrari, M., Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol. 28 (2010), 181–188.
-
(2010)
Trends Biotechnol.
, vol.28
, pp. 181-188
-
-
Ferrari, M.1
-
67
-
-
40449122225
-
Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications
-
67 Tasciotti, E., et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3 (2008), 151–157.
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 151-157
-
-
Tasciotti, E.1
-
68
-
-
84959017342
-
DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction
-
68 Ohta, S., et al. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science 351 (2016), 841–845.
-
(2016)
Science
, vol.351
, pp. 841-845
-
-
Ohta, S.1
-
69
-
-
84957597392
-
Transmutable nanoparticles with reconfigurable surface ligands
-
69 Kim, Y., et al. Transmutable nanoparticles with reconfigurable surface ligands. Science 351 (2016), 579–582.
-
(2016)
Science
, vol.351
, pp. 579-582
-
-
Kim, Y.1
-
70
-
-
84858766182
-
The blockade of immune checkpoints in cancer immunotherapy
-
70 Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12 (2012), 252–264.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 252-264
-
-
Pardoll, D.M.1
-
71
-
-
84928761118
-
Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer
-
71 Rizvi, N.A., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348 (2015), 124–128.
-
(2015)
Science
, vol.348
, pp. 124-128
-
-
Rizvi, N.A.1
-
72
-
-
85047692172
-
Therapeutic vaccines for cancer: an overview of clinical trials
-
72 Melero, I., et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11 (2014), 509–524.
-
(2014)
Nat. Rev. Clin. Oncol.
, vol.11
, pp. 509-524
-
-
Melero, I.1
-
73
-
-
80052270541
-
Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations
-
73 Hamdy, S., et al. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv. Drug Deliv. Rev. 63 (2011), 943–955.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 943-955
-
-
Hamdy, S.1
-
74
-
-
84884676871
-
Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination
-
74 Li, A.V., et al. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Science Trans. Med., 5, 2013, 204ra130.
-
(2013)
Science Trans. Med.
, vol.5
, pp. 204ra130
-
-
Li, A.V.1
-
75
-
-
84871956263
-
Biodegradable particles as vaccine delivery systems: size matters
-
75 Joshi, V.B., et al. Biodegradable particles as vaccine delivery systems: size matters. AAPS J. 15 (2013), 85–94.
-
(2013)
AAPS J.
, vol.15
, pp. 85-94
-
-
Joshi, V.B.1
-
76
-
-
21344448185
-
Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model
-
76 Foged, C., et al. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298 (2005), 315–322.
-
(2005)
Int. J. Pharm.
, vol.298
, pp. 315-322
-
-
Foged, C.1
-
77
-
-
33748137709
-
Stable cationic microparticles for enhanced model antigen delivery to dendritic cells
-
77 Wischke, C., et al. Stable cationic microparticles for enhanced model antigen delivery to dendritic cells. J. Control Release 114 (2006), 359–368.
-
(2006)
J. Control Release
, vol.114
, pp. 359-368
-
-
Wischke, C.1
-
78
-
-
79956114010
-
Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines
-
78 Demento, S.L., et al. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol. 29 (2011), 294–306.
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 294-306
-
-
Demento, S.L.1
-
79
-
-
79956159643
-
The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses
-
79 Ma, Y., et al. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses. Nanoscale 3 (2011), 2307–2314.
-
(2011)
Nanoscale
, vol.3
, pp. 2307-2314
-
-
Ma, Y.1
-
81
-
-
84864258079
-
The effect of nanoparticle size, shape, and surface chemistry on biological systems
-
81 Albanese, A., et al. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann. Rev. Biomed. Eng. 14 (2012), 1–16.
-
(2012)
Ann. Rev. Biomed. Eng.
, vol.14
, pp. 1-16
-
-
Albanese, A.1
-
82
-
-
84878326767
-
Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo
-
82 Niikura, K., et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 7 (2013), 3926–3938.
-
(2013)
ACS Nano.
, vol.7
, pp. 3926-3938
-
-
Niikura, K.1
-
83
-
-
68949208465
-
Nanocarriers’ entry into the cell: relevance to drug delivery
-
83 Hillaireau, H., Couvreur, P., Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol. Life Sci. 66 (2009), 2873–2896.
-
(2009)
Cell Mol. Life Sci.
, vol.66
, pp. 2873-2896
-
-
Hillaireau, H.1
Couvreur, P.2
-
84
-
-
84857888962
-
Nanoparticle hydrophobicity dictates immune response
-
84 Moyano, D.F., et al. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc. 134 (2012), 3965–3967.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 3965-3967
-
-
Moyano, D.F.1
-
85
-
-
84942870944
-
Hybrid nanoparticles improve targeting to inflammatory macrophages through phagocytic signals
-
85 Bagalkot, V., et al. Hybrid nanoparticles improve targeting to inflammatory macrophages through phagocytic signals. J. Control Release 217 (2015), 243–255.
-
(2015)
J. Control Release
, vol.217
, pp. 243-255
-
-
Bagalkot, V.1
-
86
-
-
84883567844
-
Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles
-
86 Zhu, S., et al. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol. Pharm. 10 (2013), 3525–3530.
-
(2013)
Mol. Pharm.
, vol.10
, pp. 3525-3530
-
-
Zhu, S.1
-
87
-
-
84970029114
-
Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes
-
87 Qie, Y., et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci. Rep., 6, 2016, 26269.
-
(2016)
Sci. Rep.
, vol.6
, pp. 26269
-
-
Qie, Y.1
-
88
-
-
84944228684
-
Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen
-
88 Saluja, S.S., et al. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int. J. Nanomedicine 9 (2014), 5231–5246.
-
(2014)
Int. J. Nanomedicine
, vol.9
, pp. 5231-5246
-
-
Saluja, S.S.1
-
89
-
-
84871650149
-
Construction and characterization of virus-like particles: a review
-
89 Zeltins, A., Construction and characterization of virus-like particles: a review. Mol. Biotechnol. 53 (2013), 92–107.
-
(2013)
Mol. Biotechnol.
, vol.53
, pp. 92-107
-
-
Zeltins, A.1
-
90
-
-
84870540478
-
Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development
-
90 Kushnir, N., et al. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31 (2012), 58–83.
-
(2012)
Vaccine
, vol.31
, pp. 58-83
-
-
Kushnir, N.1
-
91
-
-
84960114076
-
In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer
-
91 Lizotte, P.H., et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol. 11 (2016), 295–303.
-
(2016)
Nat. Nanotechnol.
, vol.11
, pp. 295-303
-
-
Lizotte, P.H.1
-
92
-
-
84960510061
-
Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles
-
92 Lebel, M.E., et al. Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles. Nano Lett. 16 (2016), 1826–1832.
-
(2016)
Nano Lett.
, vol.16
, pp. 1826-1832
-
-
Lebel, M.E.1
-
93
-
-
84923340342
-
Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody
-
93 Jobsri, J., et al. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody. PLoS ONE, 10, 2015, e0118096.
-
(2015)
PLoS ONE
, vol.10
, pp. e0118096
-
-
Jobsri, J.1
-
94
-
-
84969852215
-
Three-dimensional optical mapping of nanoparticle distribution in intact tissues
-
94 Sindhwani, S., et al. Three-dimensional optical mapping of nanoparticle distribution in intact tissues. ACS Nano. 10 (2016), 5468–5478.
-
(2016)
ACS Nano.
, vol.10
, pp. 5468-5478
-
-
Sindhwani, S.1
-
95
-
-
34248402413
-
Shape effects of filaments versus spherical particles in flow and drug delivery
-
95 Geng, Y., et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2 (2007), 249–255.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 249-255
-
-
Geng, Y.1
-
96
-
-
34547690726
-
Immunological properties of engineered nanomaterials
-
96 Dobrovolskaia, M.A., McNeil, S.E., Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2 (2007), 469–478.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 469-478
-
-
Dobrovolskaia, M.A.1
McNeil, S.E.2
-
97
-
-
84885483569
-
Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology
-
97 Tenzer, S., et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8 (2013), 772–781.
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 772-781
-
-
Tenzer, S.1
-
98
-
-
84864241697
-
Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells
-
98 Lesniak, A., et al. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 6 (2012), 5845–5857.
-
(2012)
ACS Nano.
, vol.6
, pp. 5845-5857
-
-
Lesniak, A.1
|