메뉴 건너뛰기




Volumn 39, Issue 1, 2017, Pages 1-12

Is H3K4me3 instructive for transcription activation?

Author keywords

CFP1 Spp1; chromatin; H3K4me3; methylation; Set1; transcription; transcription activation

Indexed keywords

BACTERIAL PROTEIN; HISTONE H3; LYSINE; MESSENGER RNA PRECURSOR; METHYLTRANSFERASE; OSTEOPONTIN; HISTONE;

EID: 84997795083     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201600095     Document Type: Article
Times cited : (220)

References (139)
  • 2
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 Å resolution
    • Luger K, Mäder AW, Richmond RK, Sargent DF, et al. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389: 251–60.
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mäder, A.W.2    Richmond, R.K.3    Sargent, D.F.4
  • 3
    • 84921687954 scopus 로고    scopus 로고
    • Lysine acetylation controls local protein conformation by influencing proline isomerization
    • Howe FS, Boubriak I, Sale MJ, Nair A, et al. 2014. Lysine acetylation controls local protein conformation by influencing proline isomerization. Mol Cell 55: 733–44.
    • (2014) Mol Cell , vol.55 , pp. 733-744
    • Howe, F.S.1    Boubriak, I.2    Sale, M.J.3    Nair, A.4
  • 4
    • 84905392053 scopus 로고    scopus 로고
    • H3K4me3 breadth is linked to cell identity and transcriptional consistency
    • Benayoun BA, Pollina EA, Ucar D, Mahmoudi S, et al. 2014. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158: 673–88.
    • (2014) Cell , vol.158 , pp. 673-688
    • Benayoun, B.A.1    Pollina, E.A.2    Ucar, D.3    Mahmoudi, S.4
  • 5
    • 84975886100 scopus 로고    scopus 로고
    • Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription
    • Ramakrishnan S, Pokhrel S, Palani S, Pflueger C, et al. 2016. Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription. Nat Commun 7: 11949.
    • (2016) Nat Commun , vol.7 , pp. 11949
    • Ramakrishnan, S.1    Pokhrel, S.2    Palani, S.3    Pflueger, C.4
  • 6
    • 84861870951 scopus 로고    scopus 로고
    • The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis
    • Shilatifard A. 2012. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81: 65–95.
    • (2012) Annu Rev Biochem , vol.81 , pp. 65-95
    • Shilatifard, A.1
  • 7
    • 0028869112 scopus 로고
    • Altered Hox expression and segmental identity in Mll-mutant mice
    • Yu BD, Hess JL, Horning SE, Brown GA, et al. 1995. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378: 505–8.
    • (1995) Nature , vol.378 , pp. 505-508
    • Yu, B.D.1    Hess, J.L.2    Horning, S.E.3    Brown, G.A.4
  • 8
    • 33646681035 scopus 로고    scopus 로고
    • Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development
    • Glaser S, Schaft J, Lubitz S, Vintersten K, et al. 2006. Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 133: 1423–32.
    • (2006) Development , vol.133 , pp. 1423-1432
    • Glaser, S.1    Schaft, J.2    Lubitz, S.3    Vintersten, K.4
  • 9
    • 58049206724 scopus 로고    scopus 로고
    • Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis
    • Lee J, Saha PK, Yang Q-H, Lee S, et al. 2008. Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci USA 105: 19229–34.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 19229-19234
    • Lee, J.1    Saha, P.K.2    Yang, Q.-H.3    Lee, S.4
  • 10
    • 57349124451 scopus 로고    scopus 로고
    • Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS
    • Wu M, Wang PF, Lee J-S., Martin-Brown S, et al. 2008. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol 28: 7337–44.
    • (2008) Mol Cell Biol , vol.28 , pp. 7337-7344
    • Wu, M.1    Wang, P.F.2    Lee, J.-S.3    Martin-Brown, S.4
  • 11
    • 79960643838 scopus 로고    scopus 로고
    • Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription
    • Ardehali MB, Mei A, Zobeck KL, Caron M, et al. 2011. Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J 30: 2817–28.
    • (2011) EMBO J , vol.30 , pp. 2817-2828
    • Ardehali, M.B.1    Mei, A.2    Zobeck, K.L.3    Caron, M.4
  • 12
    • 81855195123 scopus 로고    scopus 로고
    • The COMPASS family of H3K4 methylases in drosophila
    • Mohan M, Herz H-M, Smith ER, Zhang Y, et al. 2011. The COMPASS family of H3K4 methylases in drosophila. Mol Cell Biol 31: 4310–8.
    • (2011) Mol Cell Biol , vol.31 , pp. 4310-4318
    • Mohan, M.1    Herz, H.-M.2    Smith, E.R.3    Zhang, Y.4
  • 13
    • 33746849256 scopus 로고    scopus 로고
    • Regulation of MLL1 H3K4 methyltransferase activity by its core components
    • Dou Y, Milne TA, Ruthenburg AJ, Lee S, et al. 2006. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 13: 713–9.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 713-719
    • Dou, Y.1    Milne, T.A.2    Ruthenburg, A.J.3    Lee, S.4
  • 14
    • 33748364351 scopus 로고    scopus 로고
    • Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes
    • Steward MM, Lee J-S, O'Donovan A, Wyatt M, et al. 2006. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol 13: 852–4.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 852-854
    • Steward, M.M.1    Lee, J.-S.2    O'Donovan, A.3    Wyatt, M.4
  • 15
    • 71949107301 scopus 로고    scopus 로고
    • Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II
    • Wang P, Lin C, Smith E, Guo H, et al. 2009. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol Cell Biol 29: 6074–85.
    • (2009) Mol Cell Biol , vol.29 , pp. 6074-6085
    • Wang, P.1    Lin, C.2    Smith, E.3    Guo, H.4
  • 16
    • 84891711796 scopus 로고    scopus 로고
    • The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers
    • Hu D, Gao X, Morgan MA, Herz H-M, et al. 2013. The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol 33: 4745–54.
    • (2013) Mol Cell Biol , vol.33 , pp. 4745-4754
    • Hu, D.1    Gao, X.2    Morgan, M.A.3    Herz, H.-M.4
  • 17
    • 84929925487 scopus 로고    scopus 로고
    • Hijacked in cancer: the KMT2 (MLL) family of methyltransferases
    • Rao RC, Dou Y. 2015. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer 15: 334–46.
    • (2015) Nat Rev Cancer , vol.15 , pp. 334-346
    • Rao, R.C.1    Dou, Y.2
  • 18
    • 77954660029 scopus 로고    scopus 로고
    • Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans
    • Greer EL, Maures TJ, Hauswirth AG, Green EM, et al. 2010. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466: 383–7.
    • (2010) Nature , vol.466 , pp. 383-387
    • Greer, E.L.1    Maures, T.J.2    Hauswirth, A.G.3    Green, E.M.4
  • 19
    • 0031777172 scopus 로고    scopus 로고
    • Trithorax and the regulation of homeotic gene expression in Drosophila: a historical perspective
    • Ingham PW. 1998. Trithorax and the regulation of homeotic gene expression in Drosophila: a historical perspective. Int J Dev Biol 42: 423–9.
    • (1998) Int J Dev Biol , vol.42 , pp. 423-429
    • Ingham, P.W.1
  • 20
    • 20444417108 scopus 로고    scopus 로고
    • WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development
    • Wysocka J, Swigut T, Milne TA, Dou Y, et al. 2005. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121: 859–72.
    • (2005) Cell , vol.121 , pp. 859-872
    • Wysocka, J.1    Swigut, T.2    Milne, T.A.3    Dou, Y.4
  • 21
    • 79954414897 scopus 로고    scopus 로고
    • Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network
    • Ang YS, Tsai SY, Lee DF, Monk J, et al. 2011. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145: 183–7.
    • (2011) Cell , vol.145 , pp. 183-187
    • Ang, Y.S.1    Tsai, S.Y.2    Lee, D.F.3    Monk, J.4
  • 22
    • 79951711112 scopus 로고    scopus 로고
    • Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains
    • Jiang H, Shukla A, Wang X, Chen WY, et al. 2011. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144: 513–25.
    • (2011) Cell , vol.144 , pp. 513-525
    • Jiang, H.1    Shukla, A.2    Wang, X.3    Chen, W.Y.4
  • 23
    • 84961231117 scopus 로고    scopus 로고
    • MLL1 inhibition reprograms epiblast stem cells to naive pluripotency
    • Zhang H, Gayen S, Xiong J, Zhou B, et al. 2016. MLL1 inhibition reprograms epiblast stem cells to naive pluripotency. Cell Stem Cell 18: 481–94.
    • (2016) Cell Stem Cell , vol.18 , pp. 481-494
    • Zhang, H.1    Gayen, S.2    Xiong, J.3    Zhou, B.4
  • 25
    • 19944430797 scopus 로고    scopus 로고
    • Genomic maps and comparative analysis of histone modifications in human and mouse
    • Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, et al. 2005. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120: 169–81.
    • (2005) Cell , vol.120 , pp. 169-181
    • Bernstein, B.E.1    Kamal, M.2    Lindblad-Toh, K.3    Bekiranov, S.4
  • 26
    • 26444508841 scopus 로고    scopus 로고
    • Single-nucleosome mapping of histone modifications in S. cerevisiae
    • Liu CL, Kaplan T, Kim M, Buratowski S, et al. 2005. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 3: e328.
    • (2005) PLoS Biol , vol.3
    • Liu, C.L.1    Kaplan, T.2    Kim, M.3    Buratowski, S.4
  • 27
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski A, Cuddapah S, Cui K, Roh TY, et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129: 823–37.
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1    Cuddapah, S.2    Cui, K.3    Roh, T.Y.4
  • 28
    • 34447098370 scopus 로고    scopus 로고
    • A chromatin landmark and transcription initiation at most promoters in human cells
    • Guenther MG, Levine SS, Boyer LA, Jaenisch R, et al. 2007. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130: 77–88.
    • (2007) Cell , vol.130 , pp. 77-88
    • Guenther, M.G.1    Levine, S.S.2    Boyer, L.A.3    Jaenisch, R.4
  • 29
    • 35348986412 scopus 로고    scopus 로고
    • Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation
    • Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, et al. 2007. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449: 928–32.
    • (2007) Nature , vol.449 , pp. 928-932
    • Kirmizis, A.1    Santos-Rosa, H.2    Penkett, C.J.3    Singer, M.A.4
  • 30
    • 42549090878 scopus 로고    scopus 로고
    • High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression
    • Li X, Wang X, He K, Ma Y, et al. 2008. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20: 259–76.
    • (2008) Plant Cell , vol.20 , pp. 259-276
    • Li, X.1    Wang, X.2    He, K.3    Ma, Y.4
  • 31
    • 67650091251 scopus 로고    scopus 로고
    • Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana
    • Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, et al. 2009. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10: R62.
    • (2009) Genome Biol , vol.10 , pp. R62
    • Zhang, X.1    Bernatavichute, Y.V.2    Cokus, S.3    Pellegrini, M.4
  • 32
    • 78049400268 scopus 로고    scopus 로고
    • Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana
    • van Dijk K, Ding Y, Malkaram S, Riethoven J-JM, et al. 2010. Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol 10: 238.
    • (2010) BMC Plant Biol , vol.10 , pp. 238
    • van Dijk, K.1    Ding, Y.2    Malkaram, S.3    Riethoven, J.-J.M.4
  • 33
    • 79953760389 scopus 로고    scopus 로고
    • H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation
    • Guillemette B, Drogaris P, Lin H-HS, Armstrong H, et al. 2011. H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet 7: e1001354.
    • (2011) PLoS Genet , vol.7
    • Guillemette, B.1    Drogaris, P.2    Lin, H.-H.S.3    Armstrong, H.4
  • 34
    • 84455200582 scopus 로고    scopus 로고
    • Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells
    • Ram O, Goren A, Amit I, Shoresh N, et al. 2011. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 147: 1628–39.
    • (2011) Cell , vol.147 , pp. 1628-1639
    • Ram, O.1    Goren, A.2    Amit, I.3    Shoresh, N.4
  • 35
    • 84942984698 scopus 로고    scopus 로고
    • Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes
    • Chen K, Chen Z, Wu D, Zhang L, et al. 2015. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat Genet 47: 1149–57.
    • (2015) Nat Genet , vol.47 , pp. 1149-1157
    • Chen, K.1    Chen, Z.2    Wu, D.3    Zhang, L.4
  • 36
    • 44949115881 scopus 로고    scopus 로고
    • Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor
    • Peña PV, Hom RA, Hung T, Lin H, et al. 2008. Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J Mol Biol 380: 303–12.
    • (2008) J Mol Biol , vol.380 , pp. 303-312
    • Peña, P.V.1    Hom, R.A.2    Hung, T.3    Lin, H.4
  • 37
    • 77957354585 scopus 로고    scopus 로고
    • Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway
    • Faucher D, Wellinger RJ. 2010. Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway. PLoS Genet 6: e1001082.
    • (2010) PLoS Genet , vol.6
    • Faucher, D.1    Wellinger, R.J.2
  • 38
    • 58749092121 scopus 로고    scopus 로고
    • Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites
    • Borde V, Robine N, Lin W, Bonfils S, et al. 2009. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28: 99–111.
    • (2009) EMBO J , vol.28 , pp. 99-111
    • Borde, V.1    Robine, N.2    Lin, W.3    Bonfils, S.4
  • 39
    • 84872142934 scopus 로고    scopus 로고
    • The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination
    • Acquaviva L, Székvölgyi L, Dichtl B, Dichtl BS, et al. 2013. The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science 339: 215–8.
    • (2013) Science , vol.339 , pp. 215-218
    • Acquaviva, L.1    Székvölgyi, L.2    Dichtl, B.3    Dichtl, B.S.4
  • 40
    • 84872249432 scopus 로고    scopus 로고
    • Spp1, a member of the Set1 Complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes
    • Sommermeyer V, Béneut C, Chaplais E, Serrentino ME, et al. 2013. Spp1, a member of the Set1 Complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes. Mol Cell 49: 43–54.
    • (2013) Mol Cell , vol.49 , pp. 43-54
    • Sommermeyer, V.1    Béneut, C.2    Chaplais, E.3    Serrentino, M.E.4
  • 41
    • 84912085999 scopus 로고    scopus 로고
    • Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters
    • Quinodoz M, Gobet C, Naef F, Gustafson KB. 2014. Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters. Genome Biol 15: R85.
    • (2014) Genome Biol , vol.15 , pp. R85
    • Quinodoz, M.1    Gobet, C.2    Naef, F.3    Gustafson, K.B.4
  • 42
    • 85019242098 scopus 로고    scopus 로고
    • Different distribution of histone modifications in genes with unidirectional and bidirectional transcription and a role of CTCF and cohesin in directing transcription
    • Bornelöv S, Komorowski J, Wadelius C. 2015. Different distribution of histone modifications in genes with unidirectional and bidirectional transcription and a role of CTCF and cohesin in directing transcription. BMC Genomics 16: 300.
    • (2015) BMC Genomics , vol.16 , pp. 300
    • Bornelöv, S.1    Komorowski, J.2    Wadelius, C.3
  • 43
    • 84866887452 scopus 로고    scopus 로고
    • Two distinct repressive mechanisms for histone 3 lysine 4 methylation through promoting 3′-end antisense transcription
    • Margaritis T, Oreal V, Brabers NACH, Maestroni L, et al. 2012. Two distinct repressive mechanisms for histone 3 lysine 4 methylation through promoting 3′-end antisense transcription. PLoS Genet 8: e1002952.
    • (2012) PLoS Genet , vol.8
    • Margaritis, T.1    Oreal, V.2    Brabers, N.A.C.H.3    Maestroni, L.4
  • 44
    • 84984878755 scopus 로고    scopus 로고
    • Downstream antisense transcription predicts genomic features that define the specific chromatin environment at mammalian promoters
    • Lavender CA, Cannady KR, Hoffman JA, Trotter KW, et al. 2016. Downstream antisense transcription predicts genomic features that define the specific chromatin environment at mammalian promoters. PLOS Genet 12: e1006224.
    • (2016) PLOS Genet , vol.12
    • Lavender, C.A.1    Cannady, K.R.2    Hoffman, J.A.3    Trotter, K.W.4
  • 45
    • 85006374317 scopus 로고    scopus 로고
    • H3K4me3 breadth is linked to cell identity and transcriptional consistency
    • Benayoun BA, Pollina EA, Ucar D, Mahmoudi S, et al. 2014. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 163: 1281–6.
    • (2014) Cell , vol.163 , pp. 1281-1286
    • Benayoun, B.A.1    Pollina, E.A.2    Ucar, D.3    Mahmoudi, S.4
  • 46
    • 24144449573 scopus 로고    scopus 로고
    • The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation
    • Zhang K, Lin W, Latham JA, Riefler GM, et al. 2005. The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation. Cell 122: 723–34.
    • (2005) Cell , vol.122 , pp. 723-734
    • Zhang, K.1    Lin, W.2    Latham, J.A.3    Riefler, G.M.4
  • 47
    • 84872027256 scopus 로고    scopus 로고
    • ATX1-generated H3K4me3 is required for efficient elongation of transcription, not initiation, at ATX1-regulated genes
    • Ding Y, Ndamukong I, Xu Z, Lapko H, et al. 2012. ATX1-generated H3K4me3 is required for efficient elongation of transcription, not initiation, at ATX1-regulated genes. PLoS Genet 8: e1003111.
    • (2012) PLoS Genet , vol.8
    • Ding, Y.1    Ndamukong, I.2    Xu, Z.3    Lapko, H.4
  • 48
    • 0026697659 scopus 로고
    • Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo
    • Mann RK, Grunstein M. 1992. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. EMBO J 11: 3297–306.
    • (1992) EMBO J , vol.11 , pp. 3297-3306
    • Mann, R.K.1    Grunstein, M.2
  • 49
    • 77649140924 scopus 로고    scopus 로고
    • Methylation of H3K4 is required for inheritance of active transcriptional states
    • Muramoto T, Müller I, Thomas G, Melvin A, et al. 2010. Methylation of H3K4 is required for inheritance of active transcriptional states. Curr Biol 20: 397–406.
    • (2010) Curr Biol , vol.20 , pp. 397-406
    • Muramoto, T.1    Müller, I.2    Thomas, G.3    Melvin, A.4
  • 50
    • 20444375490 scopus 로고    scopus 로고
    • Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription
    • Morillon A, Karabetsou N, Nair A, Mellor J. 2005. Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription. Mol Cell 18: 723–34.
    • (2005) Mol Cell , vol.18 , pp. 723-734
    • Morillon, A.1    Karabetsou, N.2    Nair, A.3    Mellor, J.4
  • 51
    • 24944520025 scopus 로고    scopus 로고
    • Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression
    • Schneider J, Wood A, Lee J-S, Schuster R, et al. 2005. Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19: 849–56.
    • (2005) Mol Cell , vol.19 , pp. 849-856
    • Schneider, J.1    Wood, A.2    Lee, J.-S.3    Schuster, R.4
  • 52
    • 77951116072 scopus 로고    scopus 로고
    • CpG islands influence chromatin structure via the CpG-binding protein Cfp1
    • Thomson JP, Skene PJ, Selfridge J, Clouaire T, et al. 2010. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464: 1082–6.
    • (2010) Nature , vol.464 , pp. 1082-1086
    • Thomson, J.P.1    Skene, P.J.2    Selfridge, J.3    Clouaire, T.4
  • 53
    • 84896705122 scopus 로고    scopus 로고
    • Loss of histone H3 methylation at lysine 4 triggers apoptosis in Saccharomyces cerevisiae
    • Walter D, Matter A, Fahrenkrog B. 2014. Loss of histone H3 methylation at lysine 4 triggers apoptosis in Saccharomyces cerevisiae. PLoS Genet 10: e1004095.
    • (2014) PLoS Genet , vol.10
    • Walter, D.1    Matter, A.2    Fahrenkrog, B.3
  • 54
    • 0034769764 scopus 로고    scopus 로고
    • CpG binding protein is crucial for early embryonic development
    • Carlone DL, Skalnik DG. 2001. CpG binding protein is crucial for early embryonic development. Mol Cell Biol 21: 7601–6.
    • (2001) Mol Cell Biol , vol.21 , pp. 7601-7606
    • Carlone, D.L.1    Skalnik, D.G.2
  • 55
    • 20344396373 scopus 로고    scopus 로고
    • Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein
    • Carlone DL, Lee J-H, Young SRL, Dobrota E, et al. 2005. Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein. Mol Cell Biol 25: 4881–91.
    • (2005) Mol Cell Biol , vol.25 , pp. 4881-4891
    • Carlone, D.L.1    Lee, J.-H.2    Young, S.R.L.3    Dobrota, E.4
  • 56
    • 79956330964 scopus 로고    scopus 로고
    • CpG islands and the regulation of transcription
    • Deaton A, Bird A. 2011. CpG islands and the regulation of transcription. Genes Dev 25: 1010–22.
    • (2011) Genes Dev , vol.25 , pp. 1010-1022
    • Deaton, A.1    Bird, A.2
  • 57
    • 0000723156 scopus 로고    scopus 로고
    • Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1
    • Voo KS, Carlone DL, Jacobsen BM, Flodin A, et al. 2000. Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1. Mol Cell Biol 20: 2108–21.
    • (2000) Mol Cell Biol , vol.20 , pp. 2108-2121
    • Voo, K.S.1    Carlone, D.L.2    Jacobsen, B.M.3    Flodin, A.4
  • 58
    • 84872762027 scopus 로고    scopus 로고
    • A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics
    • Eberl HC, Spruijt CG, Kelstrup CD, Vermeulen M, et al. 2013. A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics. Mol Cell 49: 368–78.
    • (2013) Mol Cell , vol.49 , pp. 368-378
    • Eberl, H.C.1    Spruijt, C.G.2    Kelstrup, C.D.3    Vermeulen, M.4
  • 59
    • 0037082439 scopus 로고    scopus 로고
    • The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation
    • Birke M, Schreiner S, García-Cuéllar M-P, Mahr K, et al. 2002. The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res 30: 958–65.
    • (2002) Nucleic Acids Res , vol.30 , pp. 958-965
    • Birke, M.1    Schreiner, S.2    García-Cuéllar, M.-P.3    Mahr, K.4
  • 60
    • 60149090032 scopus 로고    scopus 로고
    • Alterations of the CxxC domain preclude oncogenic activation of mixed-lineage leukemia 2
    • Bach C, Mueller D, Buhl S, Garcia-Cuellar M-P, et al. 2009. Alterations of the CxxC domain preclude oncogenic activation of mixed-lineage leukemia 2. Oncogene 28: 815–23.
    • (2009) Oncogene , vol.28 , pp. 815-823
    • Bach, C.1    Mueller, D.2    Buhl, S.3    Garcia-Cuellar, M.-P.4
  • 61
    • 77953912031 scopus 로고    scopus 로고
    • Pro isomerization in MLL1 PHD3-Bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression
    • Wang Z, Song J, Milne TA, Wang GG, et al. 2010. Pro isomerization in MLL1 PHD3-Bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 141: 1183–94.
    • (2010) Cell , vol.141 , pp. 1183-1194
    • Wang, Z.1    Song, J.2    Milne, T.A.3    Wang, G.G.4
  • 62
    • 84864752375 scopus 로고    scopus 로고
    • Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells
    • Clouaire T, Webb S, Skene P, Illingworth R, et al. 2012. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev 26: 1714–28.
    • (2012) Genes Dev , vol.26 , pp. 1714-1728
    • Clouaire, T.1    Webb, S.2    Skene, P.3    Illingworth, R.4
  • 63
    • 84883743029 scopus 로고    scopus 로고
    • The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells
    • Hu D, Garruss AS, Gao X, Morgan MA, et al. 2013. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat Struct Mol Biol 29: 1093–7.
    • (2013) Nat Struct Mol Biol , vol.29 , pp. 1093-1097
    • Hu, D.1    Garruss, A.S.2    Gao, X.3    Morgan, M.A.4
  • 64
    • 84892683106 scopus 로고    scopus 로고
    • Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant
    • Denissov S, Hofemeister H, Marks H, Kranz A, et al. 2014. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141: 526–37.
    • (2014) Development , vol.141 , pp. 526-537
    • Denissov, S.1    Hofemeister, H.2    Marks, H.3    Kranz, A.4
  • 65
    • 34047248383 scopus 로고    scopus 로고
    • Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36
    • Shi X, Kachirskaia I, Walter KL, Kuo J-HA, et al. 2007. Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J Biol Chem 282: 2450–5.
    • (2007) J Biol Chem , vol.282 , pp. 2450-2455
    • Shi, X.1    Kachirskaia, I.2    Walter, K.L.3    Kuo, J.-H.A.4
  • 66
    • 84855488676 scopus 로고    scopus 로고
    • Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human
    • Takahashi Y-H, Westfield GH, Oleskie AN, Trievel RC, et al. 2011. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci USA 108: 20526–31.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 20526-20531
    • Takahashi, Y.-H.1    Westfield, G.H.2    Oleskie, A.N.3    Trievel, R.C.4
  • 67
    • 84875771630 scopus 로고    scopus 로고
    • The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation
    • Kim J, Kim J-A, McGinty RK, Nguyen UTT, et al. 2013. The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation. Mol Cell 49: 1121–33.
    • (2013) Mol Cell , vol.49 , pp. 1121-1133
    • Kim, J.1    Kim, J.-A.2    McGinty, R.K.3    Nguyen, U.T.T.4
  • 68
    • 84964314573 scopus 로고    scopus 로고
    • Cfp1 is required for gene expression-dependent H3K4 trimethylation and H3K9 acetylation in embryonic stem cells
    • Clouaire T, Webb S, Bird A. 2014. Cfp1 is required for gene expression-dependent H3K4 trimethylation and H3K9 acetylation in embryonic stem cells. Genome Biol 15: 451.
    • (2014) Genome Biol , vol.15 , pp. 451
    • Clouaire, T.1    Webb, S.2    Bird, A.3
  • 69
    • 79955949044 scopus 로고    scopus 로고
    • The specificity and topology of chromatin interaction pathways in yeast
    • Lenstra TL, Benschop JJ, Kim T, Schulze JM, et al. 2011. The specificity and topology of chromatin interaction pathways in yeast. Mol Cell 42: 536–49.
    • (2011) Mol Cell , vol.42 , pp. 536-549
    • Lenstra, T.L.1    Benschop, J.J.2    Kim, T.3    Schulze, J.M.4
  • 70
    • 78751659330 scopus 로고    scopus 로고
    • Nascent transcript sequencing visualizes transcription at nucleotide resolution
    • Churchman LS, Weissman JS. 2011. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469: 368–73.
    • (2011) Nature , vol.469 , pp. 368-373
    • Churchman, L.S.1    Weissman, J.S.2
  • 71
    • 84928719564 scopus 로고    scopus 로고
    • Transcription mediated insulation and interference direct gene cluster expression switches
    • Nguyen T, Fischl H, Howe FS, Woloszczuk R, et al. 2014. Transcription mediated insulation and interference direct gene cluster expression switches. Elife 3: 1–21.
    • (2014) Elife , vol.3 , pp. 1-21
    • Nguyen, T.1    Fischl, H.2    Howe, F.S.3    Woloszczuk, R.4
  • 72
    • 36049027439 scopus 로고    scopus 로고
    • Histone H3 K4 demethylation during activation and attenuation of GAL1 transcription in Saccharomyces cerevisiae
    • Ingvarsdottir K, Edwards C, Lee MG, Lee J-S, et al. 2007. Histone H3 K4 demethylation during activation and attenuation of GAL1 transcription in Saccharomyces cerevisiae. Mol Cell Biol 27: 7856–64.
    • (2007) Mol Cell Biol , vol.27 , pp. 7856-7864
    • Ingvarsdottir, K.1    Edwards, C.2    Lee, M.G.3    Lee, J.-S.4
  • 74
    • 33847613217 scopus 로고    scopus 로고
    • Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins
    • Seward DJ, Cubberley G, Kim S, Schonewald M, et al. 2007. Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins. Nat Struct Mol Biol 14: 240–2.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 240-242
    • Seward, D.J.1    Cubberley, G.2    Kim, S.3    Schonewald, M.4
  • 75
    • 34347207597 scopus 로고    scopus 로고
    • Identification of histone demethylases in Saccharomyces cerevisiae
    • Tu S, Bulloch EMM, Yang L, Ren C, et al. 2007. Identification of histone demethylases in Saccharomyces cerevisiae. J Biol Chem 282: 14262–71.
    • (2007) J Biol Chem , vol.282 , pp. 14262-14271
    • Tu, S.1    Bulloch, E.M.M.2    Yang, L.3    Ren, C.4
  • 76
    • 77955291830 scopus 로고    scopus 로고
    • The JmjN domain of Jhd2 is important for its protein stability, and the plant homeodomain (PHD) finger mediates its chromatin association independent of H3K4 methylation
    • Huang F, Chandrasekharan MB, Chen Y-C, Bhaskara S, et al. 2010. The JmjN domain of Jhd2 is important for its protein stability, and the plant homeodomain (PHD) finger mediates its chromatin association independent of H3K4 methylation. J Biol Chem 285: 24548–61.
    • (2010) J Biol Chem , vol.285 , pp. 24548-24561
    • Huang, F.1    Chandrasekharan, M.B.2    Chen, Y.-C.3    Bhaskara, S.4
  • 77
    • 84982163191 scopus 로고    scopus 로고
    • Writing of H3K4Me3 overcomes epigenetic silencing in a sustained, but context-dependent manner
    • Cano-Rodriguez D, Gjaltema RAF, Jilderda LJ, Jellema P, et al. 2016. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained, but context-dependent manner. Nat Commun 7: 1–11.
    • (2016) Nat Commun , vol.7 , pp. 1-11
    • Cano-Rodriguez, D.1    Gjaltema, R.A.F.2    Jilderda, L.J.3    Jellema, P.4
  • 78
    • 84864452351 scopus 로고    scopus 로고
    • Systematic dissection of roles for chromatin regulators in a yeast stress response
    • Weiner A, Chen HV, Liu CL, Rahat A, et al. 2012. Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol 10: e1001369.
    • (2012) PLoS Biol , vol.10
    • Weiner, A.1    Chen, H.V.2    Liu, C.L.3    Rahat, A.4
  • 79
    • 84928211518 scopus 로고    scopus 로고
    • High-resolution chromatin dynamics during a yeast stress response
    • Weiner A, Hsieh T-HS, Appleboim A, Chen HV, et al. 2015. High-resolution chromatin dynamics during a yeast stress response. Mol Cell 58: 371–86.
    • (2015) Mol Cell , vol.58 , pp. 371-386
    • Weiner, A.1    Hsieh, T.-H.S.2    Appleboim, A.3    Chen, H.V.4
  • 80
    • 33846019277 scopus 로고    scopus 로고
    • Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark
    • Ruthenburg AJ, Allis CD, Wysocka J. 2007. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25: 15–30.
    • (2007) Mol Cell , vol.25 , pp. 15-30
    • Ruthenburg, A.J.1    Allis, C.D.2    Wysocka, J.3
  • 81
    • 79957537645 scopus 로고    scopus 로고
    • Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions
    • Ruthenburg AJ, Li H, Milne TA, Dewell S, et al. 2011. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145: 692–706.
    • (2011) Cell , vol.145 , pp. 692-706
    • Ruthenburg, A.J.1    Li, H.2    Milne, T.A.3    Dewell, S.4
  • 82
    • 0345708105 scopus 로고    scopus 로고
    • Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin
    • Santos-Rosa H, Schneider R, Bernstein BE, Karabetsou N, et al. 2003. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol Cell 12: 1325–32.
    • (2003) Mol Cell , vol.12 , pp. 1325-1332
    • Santos-Rosa, H.1    Schneider, R.2    Bernstein, B.E.3    Karabetsou, N.4
  • 83
    • 36249027156 scopus 로고    scopus 로고
    • Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing
    • Sims RJ, Millhouse S, Chen CF, Lewis BA, et al. 2007. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28: 665–76.
    • (2007) Mol Cell , vol.28 , pp. 665-676
    • Sims, R.J.1    Millhouse, S.2    Chen, C.F.3    Lewis, B.A.4
  • 84
    • 65449161852 scopus 로고    scopus 로고
    • Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in Saccharomyces cerevisiae
    • Pinskaya M, Nair A, Clynes D, Morillon A, et al. 2009. Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in Saccharomyces cerevisiae. Mol Cell Biol 29: 2419–30.
    • (2009) Mol Cell Biol , vol.29 , pp. 2419-2430
    • Pinskaya, M.1    Nair, A.2    Clynes, D.3    Morillon, A.4
  • 85
    • 84874763341 scopus 로고    scopus 로고
    • H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation
    • Lauberth SM, Nakayama T, Wu X, Ferris AL, et al. 2013. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152: 1021–36.
    • (2013) Cell , vol.152 , pp. 1021-1036
    • Lauberth, S.M.1    Nakayama, T.2    Wu, X.3    Ferris, A.L.4
  • 86
    • 34848911602 scopus 로고    scopus 로고
    • Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4
    • Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, et al. 2007. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131: 58–69.
    • (2007) Cell , vol.131 , pp. 58-69
    • Vermeulen, M.1    Mulder, K.W.2    Denissov, S.3    Pijnappel, W.W.4
  • 87
    • 0034954166 scopus 로고    scopus 로고
    • The TFIID components human TAFII 140 and Drosophila BIP2 (TAFII 155) are novel metazoan homologues of yeast TAFII 47 containing a histone fold and a PHD finger
    • Gangloff Y-G, Pointud J-C, Thuault S, Carré L, et al. 2001. The TFIID components human TAFII 140 and Drosophila BIP2 (TAFII 155) are novel metazoan homologues of yeast TAFII 47 containing a histone fold and a PHD finger. Mol Cell Biol 2: 5109–21.
    • (2001) Mol Cell Biol , vol.2 , pp. 5109-5121
    • Gangloff, Y.-G.1    Pointud, J.-C.2    Thuault, S.3    Carré, L.4
  • 89
    • 33646691283 scopus 로고    scopus 로고
    • Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II
    • Pavri R, Zhu B, Li G, Trojer P, et al. 2006. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125: 703–17.
    • (2006) Cell , vol.125 , pp. 703-717
    • Pavri, R.1    Zhu, B.2    Li, G.3    Trojer, P.4
  • 90
    • 0037524702 scopus 로고    scopus 로고
    • The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation
    • Krogan NJ, Dover J, Wood A, Schneider J, et al. 2003. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell 11: 721–9.
    • (2003) Mol Cell , vol.11 , pp. 721-729
    • Krogan, N.J.1    Dover, J.2    Wood, A.3    Schneider, J.4
  • 91
    • 1642618325 scopus 로고    scopus 로고
    • Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex
    • Smith ST, Petruk S, Sedkov Y, Cho E, et al. 2004. Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nat Cell Biol 6: 162–7.
    • (2004) Nat Cell Biol , vol.6 , pp. 162-167
    • Smith, S.T.1    Petruk, S.2    Sedkov, Y.3    Cho, E.4
  • 92
    • 26844462131 scopus 로고    scopus 로고
    • MLL associates specifically with a subset of transcriptionally active target genes
    • Milne TA, Dou Y, Martin ME, Brock HW, et al. 2005. MLL associates specifically with a subset of transcriptionally active target genes. Proc Natl Acad Sci USA 102: 14765–70.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 14765-14770
    • Milne, T.A.1    Dou, Y.2    Martin, M.E.3    Brock, H.W.4
  • 93
    • 37849008702 scopus 로고    scopus 로고
    • Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes
    • Lee J-H, Skalnik DG. 2008. Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol 28: 609–18.
    • (2008) Mol Cell Biol , vol.28 , pp. 609-618
    • Lee, J.-H.1    Skalnik, D.G.2
  • 94
    • 79952291949 scopus 로고    scopus 로고
    • Two distinct roles of ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) at promoters and within transcribed regions of ATX1-regulated genes
    • Ding Y, Avramova Z, Fromm M. 2011. Two distinct roles of ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) at promoters and within transcribed regions of ATX1-regulated genes. Plant Cell 23: 350–63.
    • (2011) Plant Cell , vol.23 , pp. 350-363
    • Ding, Y.1    Avramova, Z.2    Fromm, M.3
  • 95
    • 84958729914 scopus 로고    scopus 로고
    • PAF complex plays novel subunit-specific roles in alternative cleavage and polyadenylation
    • Yang Y, Li W, Hoque M, Hou L, et al. 2016. PAF complex plays novel subunit-specific roles in alternative cleavage and polyadenylation. PLOS Genet. 12: e1005794.
    • (2016) PLOS Genet , vol.12
    • Yang, Y.1    Li, W.2    Hoque, M.3    Hou, L.4
  • 96
    • 33947509939 scopus 로고    scopus 로고
    • Regulation of histone H2A and H2B ubiquitylation
    • Osley MA. 2006. Regulation of histone H2A and H2B ubiquitylation. Briefings Funct Genomics Proteomics 5: 179–89.
    • (2006) Briefings Funct Genomics Proteomics , vol.5 , pp. 179-189
    • Osley, M.A.1
  • 97
    • 0037047323 scopus 로고    scopus 로고
    • Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6
    • Dover J, Schneider J, Tawiah-Boateng MA, Wood A, et al. 2002. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277: 28368–71.
    • (2002) J Biol Chem , vol.277 , pp. 28368-28371
    • Dover, J.1    Schneider, J.2    Tawiah-Boateng, M.A.3    Wood, A.4
  • 98
    • 0037019333 scopus 로고    scopus 로고
    • Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast
    • Sun Z-W., Allis CD. 2002. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418: 104–8.
    • (2002) Nature , vol.418 , pp. 104-108
    • Sun, Z.-W.1    Allis, C.D.2
  • 99
    • 84948457307 scopus 로고    scopus 로고
    • Interaction of the Jhd2 histone H3 Lys-4 demethylase with chromatin is controlled by histone H2A surfaces and restricted by H2B ubiquitination
    • Huang F, Ramakrishnan S, Pokhrel S, Pflueger C, et al. 2015. Interaction of the Jhd2 histone H3 Lys-4 demethylase with chromatin is controlled by histone H2A surfaces and restricted by H2B ubiquitination. J Biol Chem 290: 28760–77.
    • (2015) J Biol Chem , vol.290 , pp. 28760-28777
    • Huang, F.1    Ramakrishnan, S.2    Pokhrel, S.3    Pflueger, C.4
  • 100
    • 84922326177 scopus 로고    scopus 로고
    • High-temporal-resolution view of transcription and chromatin states across distinct metabolic states in budding yeast
    • Kuang Z, Cai L, Zhang X, Ji H, et al. 2014. High-temporal-resolution view of transcription and chromatin states across distinct metabolic states in budding yeast. Nat Struct Mol Biol 21: 854–63.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 854-863
    • Kuang, Z.1    Cai, L.2    Zhang, X.3    Ji, H.4
  • 101
    • 3142590372 scopus 로고    scopus 로고
    • Set1 is required for meiotic S-phase onset, double-strand break formation and middle gene expression
    • Sollier J, Lin W, Soustelle C, Suhre K, et al. 2004. Set1 is required for meiotic S-phase onset, double-strand break formation and middle gene expression. EMBO J 23: 1957–67.
    • (2004) EMBO J , vol.23 , pp. 1957-1967
    • Sollier, J.1    Lin, W.2    Soustelle, C.3    Suhre, K.4
  • 102
    • 84870288931 scopus 로고    scopus 로고
    • Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
    • Le Martelot G, Canella D, Symul L, Migliavacca E, et al. 2012. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10: e1001442.
    • (2012) PLoS Biol , vol.10
    • Le Martelot, G.1    Canella, D.2    Symul, L.3    Migliavacca, E.4
  • 103
    • 77950866717 scopus 로고    scopus 로고
    • Chromatin signature of embryonic pluripotency is established during genome activation
    • Vastenhouw NL, Zhang Y, Woods IG, Imam F, et al. 2010. Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464: 922–6.
    • (2010) Nature , vol.464 , pp. 922-926
    • Vastenhouw, N.L.1    Zhang, Y.2    Woods, I.G.3    Imam, F.4
  • 104
  • 105
    • 29644433964 scopus 로고    scopus 로고
    • Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains
    • Sims RJ, Chen C-F., Santos-Rosa H, Kouzarides T, et al. 2005. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 280: 41789–92.
    • (2005) J Biol Chem , vol.280 , pp. 41789-41792
    • Sims, R.J.1    Chen, C.-F.2    Santos-Rosa, H.3    Kouzarides, T.4
  • 106
    • 77149175671 scopus 로고    scopus 로고
    • Regulation of alternative splicing by histone modifications
    • Luco RF, Pan Q, Tominaga K, Blencowe BJ, et al. 2010. Regulation of alternative splicing by histone modifications. Science 327: 996–1000.
    • (2010) Science , vol.327 , pp. 996-1000
    • Luco, R.F.1    Pan, Q.2    Tominaga, K.3    Blencowe, B.J.4
  • 107
    • 0141888375 scopus 로고    scopus 로고
    • A slow RNA polymerase II affects alternative splicing in vivo
    • de la Mata M, Alonso CR, Kadener S, Fededa JP, et al. 2003. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 12: 525–32.
    • (2003) Mol Cell , vol.12 , pp. 525-532
    • de la Mata, M.1    Alonso, C.R.2    Kadener, S.3    Fededa, J.P.4
  • 108
    • 84930716439 scopus 로고    scopus 로고
    • Regulation of alternative splicing through coupling with transcription and chromatin structure
    • Naftelberg S, Schor IE, Ast G, Kornblihtt AR. 2015. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem 84: 165–98.
    • (2015) Annu Rev Biochem , vol.84 , pp. 165-198
    • Naftelberg, S.1    Schor, I.E.2    Ast, G.3    Kornblihtt, A.R.4
  • 109
    • 85006980596 scopus 로고    scopus 로고
    • Dynamic histone acetylation of H3K4me3 nucleosome regulates MCL1 pre-mRNA splicing
    • Khan DH, Gonzalez C, Tailor N, Hamedani MK, et al. 2016. Dynamic histone acetylation of H3K4me3 nucleosome regulates MCL1 pre-mRNA splicing. J Cell Physiol 9999: 1–9.
    • (2016) J Cell Physiol , vol.9999 , pp. 1-9
    • Khan, D.H.1    Gonzalez, C.2    Tailor, N.3    Hamedani, M.K.4
  • 111
    • 80052306520 scopus 로고    scopus 로고
    • H3K4 trimethylation by Set1 promotes efficient termination by the Nrd1-Nab3-Sen1 pathway
    • Terzi N, Churchman LS, Vasiljeva L, Weissman JS, et al. 2011. H3K4 trimethylation by Set1 promotes efficient termination by the Nrd1-Nab3-Sen1 pathway. Mol Cell Biol 31: 3569–83.
    • (2011) Mol Cell Biol , vol.31 , pp. 3569-3583
    • Terzi, N.1    Churchman, L.S.2    Vasiljeva, L.3    Weissman, J.S.4
  • 112
    • 84923818964 scopus 로고    scopus 로고
    • Transcription termination and the control of the transcriptome: why, where and how to stop
    • Porrua O, Libri D. 2015. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol 16: 190–202.
    • (2015) Nat Rev Mol Cell Biol , vol.16 , pp. 190-202
    • Porrua, O.1    Libri, D.2
  • 113
    • 79960303572 scopus 로고    scopus 로고
    • Histone H3 lysine 4 hypermethylation prevents aberrant nucleosome remodeling at the PHO5 promoter
    • Wang S-S, Zhou BO, Zhou J-Q. 2011. Histone H3 lysine 4 hypermethylation prevents aberrant nucleosome remodeling at the PHO5 promoter. Mol Cell Biol 31: 3171–81.
    • (2011) Mol Cell Biol , vol.31 , pp. 3171-3181
    • Wang, S.-S.1    Zhou, B.O.2    Zhou, J.-Q.3
  • 114
    • 33750328340 scopus 로고    scopus 로고
    • The Yng1p plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3
    • Martin DGE, Baetz K, Shi X, Walter KL, et al. 2006. The Yng1p plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3. Mol Cell Biol 26: 7871–9.
    • (2006) Mol Cell Biol , vol.26 , pp. 7871-7879
    • Martin, D.G.E.1    Baetz, K.2    Shi, X.3    Walter, K.L.4
  • 115
    • 33751527233 scopus 로고    scopus 로고
    • Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs
    • Taverna SD, Ilin S, Rogers RS, Tanny JC, et al. 2006. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24: 785–96.
    • (2006) Mol Cell , vol.24 , pp. 785-796
    • Taverna, S.D.1    Ilin, S.2    Rogers, R.S.3    Tanny, J.C.4
  • 116
    • 0344022572 scopus 로고    scopus 로고
    • Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity
    • Ng HH, Robert F, Young RA, Struhl K. 2003. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11: 709–19.
    • (2003) Mol Cell , vol.11 , pp. 709-719
    • Ng, H.H.1    Robert, F.2    Young, R.A.3    Struhl, K.4
  • 117
    • 84897450989 scopus 로고    scopus 로고
    • Dynamic remodeling of histone modifications in response to osmotic stress in Saccharomyces cerevisiae
    • Magraner-Pardo L, Pelechano V, Coloma MD, Tordera V. 2014. Dynamic remodeling of histone modifications in response to osmotic stress in Saccharomyces cerevisiae. BMC Genomics 15: 247.
    • (2014) BMC Genomics , vol.15 , pp. 247
    • Magraner-Pardo, L.1    Pelechano, V.2    Coloma, M.D.3    Tordera, V.4
  • 118
    • 77649217817 scopus 로고    scopus 로고
    • Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast
    • Radman-Livaja M, Liu CL, Friedman N, Schreiber SL, et al. 2010. Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast. PLoS Genet 6: e1000837.
    • (2010) PLoS Genet , vol.6
    • Radman-Livaja, M.1    Liu, C.L.2    Friedman, N.3    Schreiber, S.L.4
  • 119
    • 84859207508 scopus 로고    scopus 로고
    • Multiple exposures to drought “train” transcriptional responses in Arabidopsis
    • Ding Y, Fromm M, Avramova Z. 2012. Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nat Commun 3: 740.
    • (2012) Nat Commun , vol.3 , pp. 740
    • Ding, Y.1    Fromm, M.2    Avramova, Z.3
  • 120
    • 84937977372 scopus 로고    scopus 로고
    • Control of cancer formation by intrinsic genetic noise and microenvironmental cues
    • Brock A, Krause S, Ingber DE. 2015. Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nat Rev Cancer 15: 499–509.
    • (2015) Nat Rev Cancer , vol.15 , pp. 499-509
    • Brock, A.1    Krause, S.2    Ingber, D.E.3
  • 121
    • 84903955203 scopus 로고    scopus 로고
    • Divergence and selectivity of expression-coupled histone modifications in budding yeasts
    • Mosesson Y, Voichek Y, Barkai N. 2014. Divergence and selectivity of expression-coupled histone modifications in budding yeasts. PLoS ONE 9: e01538.
    • (2014) PLoS ONE , vol.9
    • Mosesson, Y.1    Voichek, Y.2    Barkai, N.3
  • 122
    • 33745220278 scopus 로고    scopus 로고
    • Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise
    • Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, et al. 2006. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441: 840–6.
    • (2006) Nature , vol.441 , pp. 840-846
    • Newman, J.R.S.1    Ghaemmaghami, S.2    Ihmels, J.3    Breslow, D.K.4
  • 123
    • 84860215207 scopus 로고    scopus 로고
    • Molecular mechanisms and potential functions of histone demethylases
    • Kooistra SM, Helin K. 2012. Molecular mechanisms and potential functions of histone demethylases. Nat Publ Gr 13: 297–311.
    • (2012) Nat Publ Gr , vol.13 , pp. 297-311
    • Kooistra, S.M.1    Helin, K.2
  • 124
    • 20444397430 scopus 로고    scopus 로고
    • Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF
    • Dou Y, Milne TA, Tackett AJ, Smith ER, et al. 2005. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121: 873–85.
    • (2005) Cell , vol.121 , pp. 873-885
    • Dou, Y.1    Milne, T.A.2    Tackett, A.J.3    Smith, E.R.4
  • 125
    • 57749113198 scopus 로고    scopus 로고
    • Human ATAC is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein
    • Wang YL, Faiola F, Xu M, Pan S, et al. 2008. Human ATAC is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem 283: 33808–15.
    • (2008) J Biol Chem , vol.283 , pp. 33808-33815
    • Wang, Y.L.1    Faiola, F.2    Xu, M.3    Pan, S.4
  • 126
    • 84880177044 scopus 로고    scopus 로고
    • Bimodal expression of PHO84 is modulated by early termination of antisense transcription
    • Castelnuovo M, Rahman S, Guffanti E, Infantino V, et al. 2013. Bimodal expression of PHO84 is modulated by early termination of antisense transcription. Nat Struct Mol Biol 20: 851–8.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 851-858
    • Castelnuovo, M.1    Rahman, S.2    Guffanti, E.3    Infantino, V.4
  • 127
    • 84973355580 scopus 로고    scopus 로고
    • Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast
    • Booth GT, Wang IX, Cheung VG, Lis JT. 2016. Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast. Genome Res 26: 799–811.
    • (2016) Genome Res , vol.26 , pp. 799-811
    • Booth, G.T.1    Wang, I.X.2    Cheung, V.G.3    Lis, J.T.4
  • 128
    • 77956643239 scopus 로고    scopus 로고
    • Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers
    • Vermeulen M, Eberl HC, Matarese F, Marks H, et al. 2010. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142: 967–80.
    • (2010) Cell , vol.142 , pp. 967-980
    • Vermeulen, M.1    Eberl, H.C.2    Matarese, F.3    Marks, H.4
  • 129
    • 79960621198 scopus 로고    scopus 로고
    • Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation
    • Bian C, Xu C, Ruan J, Lee KK, et al. 2011. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30: 2829–42.
    • (2011) EMBO J , vol.30 , pp. 2829-2842
    • Bian, C.1    Xu, C.2    Ruan, J.3    Lee, K.K.4
  • 130
    • 77951240318 scopus 로고    scopus 로고
    • Recognition of histone H3K4 trimethylation by the plant homeodomain of PHF2 modulates histone demethylation
    • Wen H, Li J, Song T, Lu M, et al. 2010. Recognition of histone H3K4 trimethylation by the plant homeodomain of PHF2 modulates histone demethylation. J Biol Chem 285: 9322–6.
    • (2010) J Biol Chem , vol.285 , pp. 9322-9326
    • Wen, H.1    Li, J.2    Song, T.3    Lu, M.4
  • 131
    • 77950521594 scopus 로고    scopus 로고
    • PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation
    • Feng W, Yonezawa M, Ye J, Jenuwein T, et al. 2010. PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat Struct Mol Biol 17: 445–50.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 445-450
    • Feng, W.1    Yonezawa, M.2    Ye, J.3    Jenuwein, T.4
  • 132
    • 77953449792 scopus 로고    scopus 로고
    • PHF8 targets histone methylation and RNA polymerase II to activate transcription
    • Fortschegger K, de Graaf P, Outchkourov NS, van Schaik FM, et al. 2010. PHF8 targets histone methylation and RNA polymerase II to activate transcription. Mol Cell Biol 30: 3286–98.
    • (2010) Mol Cell Biol , vol.30 , pp. 3286-3298
    • Fortschegger, K.1    de Graaf, P.2    Outchkourov, N.S.3    van Schaik, F.M.4
  • 133
    • 84975472942 scopus 로고    scopus 로고
    • PHF13 is a molecular reader and transcriptional co-regulator of H3K4me2/3
    • Chung H-R, Xu C, Fuchs A, Mund A, et al. 2016. PHF13 is a molecular reader and transcriptional co-regulator of H3K4me2/3. Elife 5: e10607.
    • (2016) Elife , vol.5
    • Chung, H.-R.1    Xu, C.2    Fuchs, A.3    Mund, A.4
  • 134
    • 33745868054 scopus 로고    scopus 로고
    • ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression
    • Shi X, Hong T, Walter KL, Ewalt M, et al. 2006. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442: 96–9.
    • (2006) Nature , vol.442 , pp. 96-99
    • Shi, X.1    Hong, T.2    Walter, K.L.3    Ewalt, M.4
  • 135
    • 29244460109 scopus 로고    scopus 로고
    • Double chromodomains cooperate to recognize the methylated histone H3 tail
    • Flanagan JF, Mi L-Z, Chruszcz M, Cymborowski M, et al. 2005. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438: 1181–5.
    • (2005) Nature , vol.438 , pp. 1181-1185
    • Flanagan, J.F.1    Mi, L.-Z.2    Chruszcz, M.3    Cymborowski, M.4
  • 136
    • 33745809637 scopus 로고    scopus 로고
    • Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF
    • Li H, Ilin S, Wang W, Duncan EM, et al. 2006. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442: 91–5.
    • (2006) Nature , vol.442 , pp. 91-95
    • Li, H.1    Ilin, S.2    Wang, W.3    Duncan, E.M.4
  • 137
    • 33745839365 scopus 로고    scopus 로고
    • A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling
    • Wysocka J, Swigut T, Xiao H, Milne TA, et al. 2006. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442: 86–90.
    • (2006) Nature , vol.442 , pp. 86-90
    • Wysocka, J.1    Swigut, T.2    Xiao, H.3    Milne, T.A.4
  • 138
    • 84897516401 scopus 로고    scopus 로고
    • Histone H3 lysine 4 trimethylation regulates cotranscriptional H2A variant exchange by Tip60 complexes to maximize gene expression
    • Kusch T, Mei A, Nguyen C. 2014. Histone H3 lysine 4 trimethylation regulates cotranscriptional H2A variant exchange by Tip60 complexes to maximize gene expression. Proc Natl Acad Sci USA 111: 4850–5.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 4850-4855
    • Kusch, T.1    Mei, A.2    Nguyen, C.3
  • 139
    • 84928386012 scopus 로고    scopus 로고
    • Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing
    • Nojima T, Gomes T, Grosso ARF, Kimura H, et al. 2015. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161: 526–40.
    • (2015) Cell , vol.161 , pp. 526-540
    • Nojima, T.1    Gomes, T.2    Grosso, A.R.F.3    Kimura, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.