메뉴 건너뛰기




Volumn 16, Issue 3, 2015, Pages 190-202

Transcription termination and the control of the transcriptome: Why, where and how to stop

Author keywords

[No Author keywords available]

Indexed keywords

CAP BINDING PROTEIN; MESSENGER RNA; TRANSCRIPTOME; UNTRANSLATED RNA; DNA HELICASE; NAB3 PROTEIN, S CEREVISIAE; NRD1 PROTEIN, S CEREVISIAE; NUCLEAR PROTEIN; RNA BINDING PROTEIN; RNA HELICASE; RNA POLYMERASE II; SACCHAROMYCES CEREVISIAE PROTEIN; SEN1 PROTEIN, S CEREVISIAE;

EID: 84923818964     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm3943     Document Type: Review
Times cited : (219)

References (131)
  • 1
    • 70449953975 scopus 로고    scopus 로고
    • The complex eukaryotic transcriptome: Unexpected pervasive transcription and novel small RNAs
    • Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nature Rev. Genet. 10, 833-844 (2009).
    • (2009) Nature Rev. Genet , vol.10 , pp. 833-844
    • Jacquier, A.1
  • 2
    • 84867167784 scopus 로고    scopus 로고
    • Cryptic transcription and early termination in the control of gene expression
    • Colin, J., Libri, D. & Porrua, O. Cryptic transcription and early termination in the control of gene expression. Genet. Res. Int. 2011, 653494 (2011).
    • (2011) Genet. Res. Int. , vol.2011 , pp. 653494
    • Colin, J.1    Libri, D.2    Porrua, O.3
  • 3
    • 84888187077 scopus 로고    scopus 로고
    • Dealing with pervasive transcription
    • Jensen, T. H., Jacquier, A. & Libri, D. Dealing with pervasive transcription. Mol. Cell 52, 473-484 (2013).
    • (2013) Mol. Cell , vol.52 , pp. 473-484
    • Jensen, T.H.1    Jacquier, A.2    Libri, D.3
  • 4
    • 79955475464 scopus 로고    scopus 로고
    • Unravelling the means to an end: RNA polymerase II transcription termination
    • Kuehner, J. N., Pearson, E. L. & Moore, C. Unravelling the means to an end: RNA polymerase II transcription termination. Nature Rev. Mol. Cell. Biol. 12, 283-294 (2011).
    • (2011) Nature Rev. Mol. Cell. Biol. , vol.12 , pp. 283-294
    • Kuehner, J.N.1    Pearson, E.L.2    Moore, C.3
  • 5
    • 84899869788 scopus 로고    scopus 로고
    • Delineating the structural blueprint of the pre-mRNA 3-end processing machinery
    • Xiang, K., Tong, L. & Manley, J. L. Delineating the structural blueprint of the pre-mRNA 3-end processing machinery. Mol. Cell. Biol. 34, 1894-1910 (2014).
    • (2014) Mol. Cell. Biol , vol.34 , pp. 1894-1910
    • Xiang, K.1    Tong, L.2    Manley, J.L.3
  • 6
    • 66149187105 scopus 로고    scopus 로고
    • Transcription termination by nuclear RNA polymerases
    • Richard, P. & Manley, J. L. Transcription termination by nuclear RNA polymerases. Genes Dev. 23, 1247-1269 (2009).
    • (2009) Genes Dev , vol.23 , pp. 1247-1269
    • Richard, P.1    Manley, J.L.2
  • 7
    • 84872408012 scopus 로고    scopus 로고
    • Disengaging polymerase: Terminating RNA polymerase II transcription in budding yeast
    • Mischo, H. E. & Proudfoot, N. J. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. Biochim. Biophys. Acta 1829, 174-185 (2013).
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 174-185
    • Mischo, H.E.1    Proudfoot, N.J.2
  • 8
    • 84921643969 scopus 로고    scopus 로고
    • Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition
    • Baejen, C. et al. Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol. Cell 55, 745-757 (2014).
    • (2014) Mol. Cell , vol.55 , pp. 745-757
    • Baejen, C.1
  • 9
    • 84919770754 scopus 로고    scopus 로고
    • The evolutionarily conserved Pol II flap loop contributes to proper transcription termination on short yeast genes
    • Pearson, E. & Moore, C. The evolutionarily conserved Pol II flap loop contributes to proper transcription termination on short yeast genes. Cell Rep. 9, 821-828 (2014).
    • (2014) Cell Rep. , vol.9 , pp. 821-828
    • Pearson, E.1    Moore, C.2
  • 10
    • 0037007218 scopus 로고    scopus 로고
    • Dual requirement for yeast hnRNP Nab2p in mRNA poly(A) tail length control and nuclear export
    • Hector, R. E. et al. Dual requirement for yeast hnRNP Nab2p in mRNA poly(A) tail length control and nuclear export. EMBO J. 21, 1800-1810 (2002).
    • (2002) EMBO J , vol.21 , pp. 1800-1810
    • Hector, R.E.1
  • 11
    • 11844270415 scopus 로고    scopus 로고
    • Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export
    • Dunn, E. F., Hammell, C. M., Hodge, C. A. & Cole, C. N. Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export. Genes Dev. 19, 90-103 (2005).
    • (2005) Genes Dev , vol.19 , pp. 90-103
    • Dunn, E.F.1    Hammell, C.M.2    Hodge, C.A.3    Cole, C.N.4
  • 12
    • 84891681546 scopus 로고    scopus 로고
    • Poly(A) tail-mediated gene regulation by opposing roles of Nab2 and Pab2 nuclear poly(A)-binding proteins in pre-mRNA decay
    • Grenier St-Sauveur, V., Soucek, S., Corbett, A. H. & Bachand, F. Poly(A) tail-mediated gene regulation by opposing roles of Nab2 and Pab2 nuclear poly(A)-binding proteins in pre-mRNA decay. Mol. Cell. Biol. 33, 4718-4731 (2013).
    • (2013) Mol. Cell. Biol , vol.33 , pp. 4718-4731
    • Grenier St-Sauveur, V.1    Soucek, S.2    Corbett, A.H.3    Bachand, F.4
  • 13
    • 84864322244 scopus 로고    scopus 로고
    • Rrp6p controls mRNA poly(A) tail length and its decoration with poly(A) binding proteins
    • Schmid, M. et al. Rrp6p controls mRNA poly(A) tail length and its decoration with poly(A) binding proteins. Mol. Cell 47, 267-280 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 267-280
    • Schmid, M.1
  • 14
    • 84888430451 scopus 로고    scopus 로고
    • High-frequency promoter firing links THO complex function to heavy chromatin formation
    • Mouaikel, J. et al. High-frequency promoter firing links THO complex function to heavy chromatin formation. Cell Rep. 5, 1082-1094 (2013).
    • (2013) Cell Rep , vol.5 , pp. 1082-1094
    • Mouaikel, J.1
  • 15
    • 57149101122 scopus 로고    scopus 로고
    • Single-RNA counting reveals alternative modes of gene expression in yeast
    • Zenklusen, D., Larson, D. R. & Singer, R. H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nature Struct. Mol. Biol. 15, 1263-1271 (2008).
    • (2008) Nature Struct. Mol. Biol , vol.15 , pp. 1263-1271
    • Zenklusen, D.1    Larson, D.R.2    Singer, R.H.3
  • 16
    • 84869093362 scopus 로고    scopus 로고
    • Extensive degradation of RNA precursors by the exosome in wild-type cells
    • Gudipati, R. K. et al. Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol. Cell 48, 409-421 (2012).
    • (2012) Mol. Cell , vol.48 , pp. 409-421
    • Gudipati, R.K.1
  • 17
    • 84883377142 scopus 로고    scopus 로고
    • A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs
    • Tuck, A. C. & Tollervey, D. A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 154, 996-1009 (2013).
    • (2013) Cell , vol.154 , pp. 996-1009
    • Tuck, A.C.1    Tollervey, D.2
  • 18
    • 80054759888 scopus 로고    scopus 로고
    • Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1 Nab3 and Sen1
    • Creamer, T. J. et al. Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet. 7, e1002329 (2011).
    • (2011) PLoS Genet , vol.7 , pp. e1002329
    • Creamer, T.J.1
  • 19
    • 0038219583 scopus 로고    scopus 로고
    • Independent functions of yeast Pcf11p in pre-mRNA 3 end processing and in transcription termination
    • Sadowski, M., Dichtl, B., Hübner, W. & Keller, W. Independent functions of yeast Pcf11p in pre-mRNA 3 end processing and in transcription termination. EMBO J. 22, 2167-2177 (2003).
    • (2003) EMBO J , vol.22 , pp. 2167-2177
    • Sadowski, M.1    Dichtl, B.2    Hübner, W.3    Keller, W.4
  • 20
    • 84908315092 scopus 로고    scopus 로고
    • Genome-wide mapping of yeast RNA polymerase II termination
    • Schaughency, P., Merran, J. & Corden, J. L. Genome-wide mapping of yeast RNA polymerase II termination. PLoS Genet. 10, e1004632 (2014).
    • (2014) PLoS Genet , vol.10 , pp. e1004632
    • Schaughency, P.1    Merran, J.2    Corden, J.L.3
  • 21
    • 1542334001 scopus 로고    scopus 로고
    • Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3 end processing
    • Ahn, S. H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3 end processing. Mol. Cell 13, 67-76 (2004).
    • (2004) Mol. Cell , vol.13 , pp. 67-76
    • Ahn, S.H.1    Kim, M.2    Buratowski, S.3
  • 22
    • 1542290655 scopus 로고    scopus 로고
    • Transitions in RNA polymerase II elongation complexes at the 3 ends of genes
    • Kim, M., Ahn, S.-H., Krogan, N. J., Greenblatt, J. F. & Buratowski, S. Transitions in RNA polymerase II elongation complexes at the 3 ends of genes. EMBO J. 23, 354-364 (2004).
    • (2004) EMBO J , vol.23 , pp. 354-364
    • Kim, M.1    Ahn, S.-H.2    Krogan, N.J.3    Greenblatt, J.F.4    Buratowski, S.5
  • 23
    • 22344443368 scopus 로고    scopus 로고
    • CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3-end processing factor Pcf11
    • Zhang, Z., Fu, J. & Gilmour, D. S. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3-end processing factor, Pcf11. Genes Dev. 19, 1572-1580 (2005).
    • (2005) Genes Dev , vol.19 , pp. 1572-1580
    • Zhang, Z.1    Fu, J.2    Gilmour, D.S.3
  • 24
    • 9644310314 scopus 로고    scopus 로고
    • The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II
    • Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517-522 (2004).
    • (2004) Nature , vol.432 , pp. 517-522
    • Kim, M.1
  • 25
    • 9644308046 scopus 로고    scopus 로고
    • Human 53 exonuclease XRN2 promotes transcription termination at co-transcriptional cleavage sites
    • West, S., Gromak, N. & Proudfoot, N. J. Human 53 exonuclease XRN2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522-525 (2004).
    • (2004) Nature , vol.432 , pp. 522-525
    • West, S.1    Gromak, N.2    Proudfoot, N.J.3
  • 26
    • 69249157270 scopus 로고    scopus 로고
    • Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro
    • Dengl, S. & Cramer, P. Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro. J. Biol. Chem. 284, 21270-21279 (2009).
    • (2009) J. Biol. Chem , vol.284 , pp. 21270-21279
    • Dengl, S.1    Cramer, P.2
  • 27
    • 84880048366 scopus 로고    scopus 로고
    • Dismantling promoter-driven RNA polymerase II transcription complexes in vitro by the termination factor Rat1
    • Pearson, E. L. & Moore, C. L. Dismantling promoter-driven RNA polymerase II transcription complexes in vitro by the termination factor Rat1. J. Biol. Chem. 288, 19750-19759 (2013).
    • (2013) J. Biol. Chem , vol.288 , pp. 19750-19759
    • Pearson, E.L.1    Moore, C.L.2
  • 28
    • 33645844251 scopus 로고    scopus 로고
    • The role of Rat1 in coupling mRNA 3-end processing to transcription termination: Implications for a unified allosteric-torpedo model
    • Luo, W., Johnson, A. W. & Bentley, D. L. The role of Rat1 in coupling mRNA 3-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev. 20, 954-965 (2006).
    • (2006) Genes Dev , vol.20 , pp. 954-965
    • Luo, W.1    Johnson, A.W.2    Bentley, D.L.3
  • 29
    • 77957770031 scopus 로고    scopus 로고
    • Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain
    • Lunde, B. M. et al. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nature Struct. Mol. Biol. 17, 1195-1201 (2010).
    • (2010) Nature Struct. Mol. Biol , vol.17 , pp. 1195-1201
    • Lunde, B.M.1
  • 30
    • 0035921929 scopus 로고    scopus 로고
    • RNA-binding protein Nrd1 directs poly(A)-independent 3-end formation of RNA polymerase II transcripts
    • Steinmetz, E. J., Conrad, N. K., Brow, D. A. & Corden, J. L. RNA-binding protein Nrd1 directs poly(A)-independent 3-end formation of RNA polymerase II transcripts. Nature 413, 327-331 (2001).
    • (2001) Nature , vol.413 , pp. 327-331
    • Steinmetz, E.J.1    Conrad, N.K.2    Brow, D.A.3    Corden, J.L.4
  • 31
    • 33748424364 scopus 로고    scopus 로고
    • Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3
    • Arigo, J. T., Eyler, D. E., Carroll, K. L. & Corden, J. L. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 23, 841-851 (2006).
    • (2006) Mol. Cell , vol.23 , pp. 841-851
    • Arigo, J.T.1    Eyler, D.E.2    Carroll, K.L.3    Corden, J.L.4
  • 32
    • 33748435751 scopus 로고    scopus 로고
    • Transcription termination and nuclear degradation of cryptic unstable transcripts: A role for the Nrd1-Nab3 pathway in genome surveillance
    • Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J. & Libri, D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the Nrd1-Nab3 pathway in genome surveillance. Mol. Cell 23, 853-864 (2006).
    • (2006) Mol. Cell , vol.23 , pp. 853-864
    • Thiebaut, M.1    Kisseleva-Romanova, E.2    Rougemaille, M.3    Boulay, J.4    Libri, D.5
  • 33
    • 20444368036 scopus 로고    scopus 로고
    • Cryptic Pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase
    • Wyers, F. et al. Cryptic Pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725-737 (2005).
    • (2005) Cell , vol.121 , pp. 725-737
    • Wyers, F.1
  • 34
    • 84889591723 scopus 로고    scopus 로고
    • Transcriptome surveillance by selective termination of noncoding RNA synthesis
    • Schulz, D. et al. Transcriptome surveillance by selective termination of noncoding RNA synthesis. Cell 155, 1075-1087 (2013).
    • (2013) Cell , vol.155 , pp. 1075-1087
    • Schulz, D.1
  • 35
    • 40649121318 scopus 로고    scopus 로고
    • The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes
    • Nedea, E. et al. The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes. Mol. Cell 29, 577-587 (2008).
    • (2008) Mol. Cell , vol.29 , pp. 577-587
    • Nedea, E.1
  • 36
    • 30744467674 scopus 로고    scopus 로고
    • Nrd1 interacts with the nuclear exosome for 3 processing of RNA polymerase II transcripts
    • Vasiljeva, L. & Buratowski, S. Nrd1 interacts with the nuclear exosome for 3 processing of RNA polymerase II transcripts. Mol. Cell 21, 239-248 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 239-248
    • Vasiljeva, L.1    Buratowski, S.2
  • 37
    • 33847284995 scopus 로고    scopus 로고
    • Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements
    • Carroll, K. L., Ghirlando, R., Ames, J. M. & Corden, J. L. Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements. RNA 13, 361-373 (2007).
    • (2007) RNA , vol.13 , pp. 361-373
    • Carroll, K.L.1    Ghirlando, R.2    Ames, J.M.3    Corden, J.L.4
  • 38
    • 84867036854 scopus 로고    scopus 로고
    • Vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination
    • Porrua, O. et al. In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination. EMBO J. 31, 3935-3948 (2012).
    • (2012) EMBO J , vol.31 , pp. 3935-3948
    • Porrua, O.1
  • 39
    • 79955587252 scopus 로고    scopus 로고
    • The nuclear RNA polymerase II surveillance system targets polymerase III transcripts
    • Wlotzka, W., Kudla, G., Granneman, S. & Tollervey, D. The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J. 30, 1790-1803 (2011).
    • (2011) EMBO J , vol.30 , pp. 1790-1803
    • Wlotzka, W.1    Kudla, G.2    Granneman, S.3    Tollervey, D.4
  • 40
    • 84890905264 scopus 로고    scopus 로고
    • The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome
    • Heo, D. et al. The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. J. Biol. Chem. 288, 36676-36690 (2013).
    • (2013) J. Biol. Chem , vol.288 , pp. 36676-36690
    • Heo, D.1
  • 41
    • 84865845346 scopus 로고    scopus 로고
    • Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1
    • Kubicek, K. et al. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev. 26, 1891-1896 (2012).
    • (2012) Genes Dev , vol.26 , pp. 1891-1896
    • Kubicek, K.1
  • 42
    • 84905583138 scopus 로고    scopus 로고
    • Molecular basis for coordinating transcription termination with noncoding RNA degradation
    • Tudek, A. et al. Molecular basis for coordinating transcription termination with noncoding RNA degradation. Mol. Cell 55, 467-481 (2014).
    • (2014) Mol. Cell , vol.55 , pp. 467-481
    • Tudek, A.1
  • 43
    • 49449110180 scopus 로고    scopus 로고
    • The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain
    • Vasiljeva, L., Kim, M., Mutschler, H., Buratowski, S. & Meinhart, A. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nature Struct. Mol. Biol. 15, 795-804 (2008).
    • (2008) Nature Struct. Mol. Biol , vol.15 , pp. 795-804
    • Vasiljeva, L.1    Kim, M.2    Mutschler, H.3    Buratowski, S.4    Meinhart, A.5
  • 44
    • 77956344274 scopus 로고    scopus 로고
    • Chemical-genomic dissection of the CTD code
    • Tietjen, J. R. et al. Chemical-genomic dissection of the CTD code. Nature Struct. Mol. Biol. 17, 1154-1161 (2010).
    • (2010) Nature Struct. Mol. Biol , vol.17 , pp. 1154-1161
    • Tietjen, J.R.1
  • 45
    • 77957766550 scopus 로고    scopus 로고
    • Uniform transitions of the general RNA polymerase II transcription complex
    • Mayer, A. et al. Uniform transitions of the general RNA polymerase II transcription complex. Nature Struct. Mol. Biol. 17, 1272-1278 (2011).
    • (2011) Nature Struct. Mol. Biol , vol.17 , pp. 1272-1278
    • Mayer, A.1
  • 46
    • 77957786100 scopus 로고    scopus 로고
    • Gene-specific RNA polymerase II phosphorylation and the CTD code
    • Kim, H. et al. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nature Struct. Mol. Biol. 17, 1279-1286 (2011).
    • (2011) Nature Struct. Mol. Biol , vol.17 , pp. 1279-1286
    • Kim, H.1
  • 47
    • 0033214175 scopus 로고    scopus 로고
    • Functions of the exosome in rRNA, snoRNA and snRNA synthesis
    • Allmang, C. et al. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18, 5399-5410 (1999).
    • (1999) EMBO J , vol.18 , pp. 5399-5410
    • Allmang, C.1
  • 48
    • 0033981301 scopus 로고    scopus 로고
    • Yeast exosome mutants accumulate 3-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs
    • Van Hoof, A., Lennertz, P. & Parker, R. Yeast exosome mutants accumulate 3-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell. Biol. 20, 441-452 (2000).
    • (2000) Mol. Cell. Biol , vol.20 , pp. 441-452
    • Van Hoof, A.1    Lennertz, P.2    Parker, R.3
  • 49
    • 84880144255 scopus 로고    scopus 로고
    • A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast
    • Porrua, O. & Libri, D. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nature Struct. Mol. Biol. 20, 884-891 (2013).
    • (2013) Nature Struct. Mol. Biol , vol.20 , pp. 884-891
    • Porrua, O.1    Libri, D.2
  • 50
    • 84872269907 scopus 로고    scopus 로고
    • Kinetic competition between RNA polymerase II and Sen1-dependent transcription termination
    • Hazelbaker, D. Z., Marquardt, S., Wlotzka, W. & Buratowski, S. Kinetic competition between RNA polymerase II and Sen1-dependent transcription termination. Mol. Cell 49, 55-66 (2012).
    • (2012) Mol. Cell , vol.49 , pp. 55-66
    • Hazelbaker, D.Z.1    Marquardt, S.2    Wlotzka, W.3    Buratowski, S.4
  • 51
    • 0142215475 scopus 로고    scopus 로고
    • Global analysis of protein expression in yeast
    • Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737-741 (2003).
    • (2003) Nature , vol.425 , pp. 737-741
    • Ghaemmaghami, S.1
  • 52
    • 70349765676 scopus 로고    scopus 로고
    • Yeast RNase III triggers polyadenylation-independent transcription termination
    • Ghazal, G. et al. Yeast RNase III triggers polyadenylation-independent transcription termination. Mol. Cell 36, 99-109 (2009).
    • (2009) Mol. Cell , vol.36 , pp. 99-109
    • Ghazal, G.1
  • 53
    • 70349779344 scopus 로고    scopus 로고
    • Fail-safe transcriptional termination for protein-coding genes in S. Cerevisiae
    • Rondón, A. G., Mischo, H. E., Kawauchi, J. & Proudfoot, N. J. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol. Cell 36, 88-98 (2009).
    • (2009) Mol. Cell , vol.36 , pp. 88-98
    • Rondón, A.G.1    Mischo, H.E.2    Kawauchi, J.3    Proudfoot, N.J.4
  • 54
    • 84919476067 scopus 로고    scopus 로고
    • Roadblock termination by Reb1p restricts cryptic and readthrough transcription
    • Colin, J. et al. Roadblock termination by Reb1p restricts cryptic and readthrough transcription. Mol. Cell 56, 667-680 (2014).
    • (2014) Mol. Cell , vol.56 , pp. 667-680
    • Colin, J.1
  • 55
    • 84872414012 scopus 로고
    • Ubiquitylation and degradation of elongating RNA polymerase II: The last resort
    • Wilson, M. D., Harreman, M. & Svejstrup, J. Q. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta 1829, 151-157 (2013).
    • (1829) Biochim. Biophys. Acta , pp. 151-157
    • Wilson, M.D.1    Harreman, M.2    Svejstrup, J.Q.3
  • 56
    • 84926180327 scopus 로고    scopus 로고
    • The RNA exosome promotes transcription termination of backtracked RNA polymerase II
    • Lemay, J.-F. et al. The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nature Struct. Mol. Biol. 21, 919-926 (2014).
    • (2014) Nature Struct. Mol. Biol , vol.21 , pp. 919-926
    • Lemay, J.-F.1
  • 57
    • 84880177044 scopus 로고    scopus 로고
    • Bimodal expression of PHO84 is modulated by early termination of antisense transcription
    • Castelnuovo, M. et al. Bimodal expression of PHO84 is modulated by early termination of antisense transcription. Nature Struct. Mol. Biol. 20, 851-858 (2013).
    • (2013) Nature Struct. Mol. Biol , vol.20 , pp. 851-858
    • Castelnuovo, M.1
  • 58
    • 60549108380 scopus 로고    scopus 로고
    • Bidirectional promoters generate pervasive transcription in yeast
    • Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033-1037 (2009).
    • (2009) Nature , vol.457 , pp. 1033-1037
    • Xu, Z.1
  • 59
    • 79960065233 scopus 로고    scopus 로고
    • XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast
    • Van Dijk, E. L. et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475, 114-117 (2011).
    • (2011) Nature , vol.475 , pp. 114-117
    • Van Dijk, E.L.1
  • 60
    • 79958728225 scopus 로고    scopus 로고
    • Distinct RNA degradation pathways and 3 extensions of yeast non-coding RNA species
    • Marquardt, S., Hazelbaker, D. Z. & Buratowski, S. Distinct RNA degradation pathways and 3 extensions of yeast non-coding RNA species. Transcription 2, 145-154 (2011).
    • (2011) Transcription , vol.2 , pp. 145-154
    • Marquardt, S.1    Hazelbaker, D.Z.2    Buratowski, S.3
  • 61
    • 84898982878 scopus 로고    scopus 로고
    • Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast
    • Castelnuovo, M. et al. Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast. Nucleic Acids Res. 42, 4348-4362 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. 4348-4362
    • Castelnuovo, M.1
  • 62
    • 49449105283 scopus 로고    scopus 로고
    • Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice
    • Gudipati, R. K., Villa, T., Boulay, J. & Libri, D. Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nature Struct. Mol. Biol. 15, 786-794 (2008).
    • (2008) Nature Struct. Mol. Biol , vol.15 , pp. 786-794
    • Gudipati, R.K.1    Villa, T.2    Boulay, J.3    Libri, D.4
  • 63
    • 44949166705 scopus 로고    scopus 로고
    • Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast
    • Jenks, M. H., O'Rourke, T. W. & Reines, D. Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast. Mol. Cell. Biol. 28, 3883-3893 (2008).
    • (2008) Mol. Cell. Biol , vol.28 , pp. 3883-3893
    • Jenks, M.H.1    O'Rourke, T.W.2    Reines, D.3
  • 64
    • 33645226793 scopus 로고    scopus 로고
    • Cis-and trans-acting determinants of transcription termination by yeast RNA polymerase II
    • Steinmetz, E. J., Ng, S. B. H., Cloute, J. P. & Brow, D. A. Cis-and trans-acting determinants of transcription termination by yeast RNA polymerase II. Mol. Cell. Biol. 26, 2688-2696 (2006).
    • (2006) Mol. Cell. Biol , vol.26 , pp. 2688-2696
    • Steinmetz, E.J.1    Ng, S.B.H.2    Cloute, J.P.3    Brow, D.A.4
  • 65
    • 0038182509 scopus 로고    scopus 로고
    • Pti1p and Ref2p found in association with the mRNA 3 end formation complex direct snoRNA maturation
    • Dheur, S. et al. Pti1p and Ref2p found in association with the mRNA 3 end formation complex direct snoRNA maturation. EMBO J. 22, 2831-2840 (2003).
    • (2003) EMBO J , vol.22 , pp. 2831-2840
    • Dheur, S.1
  • 66
    • 33751506478 scopus 로고    scopus 로고
    • Distinct pathways for snoRNA and mRNA termination
    • Kim, M. et al. Distinct pathways for snoRNA and mRNA termination. Mol. Cell 24, 723-734 (2006).
    • (2006) Mol. Cell , vol.24 , pp. 723-734
    • Kim, M.1
  • 67
    • 3242707680 scopus 로고    scopus 로고
    • Coupling between snoRNP assembly and 3 processing controls box C/D snoRNA biosynthesis in yeast
    • Morlando, M. et al. Coupling between snoRNP assembly and 3 processing controls box C/D snoRNA biosynthesis in yeast. EMBO J. 23, 2392-2401 (2004).
    • (2004) EMBO J , vol.23 , pp. 2392-2401
    • Morlando, M.1
  • 68
    • 0034669050 scopus 로고    scopus 로고
    • Yeast snoRNA accumulation relies on a cleavage-dependent/polyadenylation-independent 3-processing apparatus
    • Fatica, A., Morlando, M. & Bozzoni, I. Yeast snoRNA accumulation relies on a cleavage-dependent/polyadenylation-independent 3-processing apparatus. EMBO J. 19, 6218-6229 (2000).
    • (2000) EMBO J , vol.19 , pp. 6218-6229
    • Fatica, A.1    Morlando, M.2    Bozzoni, I.3
  • 69
    • 33751504083 scopus 로고    scopus 로고
    • Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase
    • Steinmetz, E. J. et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 24, 735-746 (2006).
    • (2006) Mol. Cell , vol.24 , pp. 735-746
    • Steinmetz, E.J.1
  • 70
    • 42149154858 scopus 로고    scopus 로고
    • Budding yeast RNA polymerases i and II employ parallel mechanisms of transcriptional termination
    • Kawauchi, J., Mischo, H., Braglia, P., Rondon, A. & Proudfoot, N. J. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev. 22, 1082-1092 (2008).
    • (2008) Genes Dev , vol.22 , pp. 1082-1092
    • Kawauchi, J.1    Mischo, H.2    Braglia, P.3    Rondon, A.4    Proudfoot, N.J.5
  • 71
    • 79959345878 scopus 로고    scopus 로고
    • Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination
    • Skourti-Stathaki, K., Proudfoot, N. J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794-805 (2011).
    • (2011) Mol. Cell , vol.42 , pp. 794-805
    • Skourti-Stathaki, K.1    Proudfoot, N.J.2    Gromak, N.3
  • 72
    • 84893810594 scopus 로고    scopus 로고
    • RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7
    • Schreieck, A. et al. RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nature Struct. Mol. Biol. 21, 175-179 (2014).
    • (2014) Nature Struct. Mol. Biol , vol.21 , pp. 175-179
    • Schreieck, A.1
  • 73
    • 29544441415 scopus 로고    scopus 로고
    • Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript
    • Zhang, Z. & Gilmour, D. S. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol. Cell 21, 65-74 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 65-74
    • Zhang, Z.1    Gilmour, D.S.2
  • 74
    • 84876963384 scopus 로고    scopus 로고
    • Definition of RNA polymerase II CoTC terminator elements in the human genome
    • Nojima, T., Dienstbier, M., Murphy, S., Proudfoot, N. J. & Dye, M. J. Definition of RNA polymerase II CoTC terminator elements in the human genome. Cell Rep. 3, 1080-1092 (2013).
    • (2013) Cell Rep , vol.3 , pp. 1080-1092
    • Nojima, T.1    Dienstbier, M.2    Murphy, S.3    Proudfoot, N.J.4    Dye, M.J.5
  • 75
    • 0033106189 scopus 로고    scopus 로고
    • EM visualization of transcription by RNA polymerase II: Downstream termination requires a poly(A) signal but not transcript cleavage
    • Osheim, Y. N., Proudfoot, N. J. & Beyer, A. L. EM visualization of transcription by RNA polymerase II: downstream termination requires a poly(A) signal but not transcript cleavage. Mol. Cell 3, 379-387 (1999).
    • (1999) Mol. Cell , vol.3 , pp. 379-387
    • Osheim, Y.N.1    Proudfoot, N.J.2    Beyer, A.L.3
  • 76
    • 0036490381 scopus 로고    scopus 로고
    • EM visualization of Pol II genes in Drosophila: Most genes terminate without prior 3 end cleavage of nascent transcripts
    • Osheim, Y. N., Sikes, M. L. & Beyer, A. L. EM visualization of Pol II genes in Drosophila: most genes terminate without prior 3 end cleavage of nascent transcripts. Chromosoma 111, 1-12 (2002).
    • (2002) Chromosoma , vol.111 , pp. 1-12
    • Osheim, Y.N.1    Sikes, M.L.2    Beyer, A.L.3
  • 77
    • 33646556092 scopus 로고    scopus 로고
    • Pause sites promote transcriptional termination of mammalian RNA polymerase II
    • Gromak, N., West, S. & Proudfoot, N. J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol. 26, 3986-3996 (2006).
    • (2006) Mol. Cell. Biol , vol.26 , pp. 3986-3996
    • Gromak, N.1    West, S.2    Proudfoot, N.J.3
  • 78
    • 16244422640 scopus 로고    scopus 로고
    • Strong polyadenylation and weak pausing combine to cause efficient termination of transcription in the human G-globin gene
    • Plant, K. E., Dye, M. J., Lafaille, C. & Proudfoot, N. J. Strong polyadenylation and weak pausing combine to cause efficient termination of transcription in the human G-globin gene. Mol. Cell. Biol. 25, 3276-3285 (2005).
    • (2005) Mol. Cell. Biol , vol.25 , pp. 3276-3285
    • Plant, K.E.1    Dye, M.J.2    Lafaille, C.3    Proudfoot, N.J.4
  • 79
    • 57849109058 scopus 로고    scopus 로고
    • Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
    • Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845-1848 (2008).
    • (2008) Science , vol.322 , pp. 1845-1848
    • Core, L.J.1    Waterfall, J.J.2    Lis, J.T.3
  • 80
    • 34447125198 scopus 로고    scopus 로고
    • The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase
    • Nag, A., Narsinh, K. & Martinson, H. G. The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nature Struct. Mol. Biol. 14, 662-669 (2007).
    • (2007) Nature Struct. Mol. Biol , vol.14 , pp. 662-669
    • Nag, A.1    Narsinh, K.2    Martinson, H.G.3
  • 81
    • 78751659330 scopus 로고    scopus 로고
    • Nascent transcript sequencing visualizes transcription at nucleotide resolution
    • Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368-373 (2011).
    • (2011) Nature , vol.469 , pp. 368-373
    • Churchman, L.S.1    Weissman, J.S.2
  • 82
    • 37849036555 scopus 로고    scopus 로고
    • RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes
    • Glover-Cutter, K., Kim, S., Espinosa, J. & Bentley, D. L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nature Struct. Mol. Biol. 15, 71-78 (2008).
    • (2008) Nature Struct. Mol. Biol , vol.15 , pp. 71-78
    • Glover-Cutter, K.1    Kim, S.2    Espinosa, J.3    Bentley, D.L.4
  • 83
    • 84864577725 scopus 로고    scopus 로고
    • Dynamic transitions in RNA polymerase II density profiles during transcription termination
    • Grosso, A. R., de Almeida, S. F., Braga, J. & Carmo-Fonseca, M. Dynamic transitions in RNA polymerase II density profiles during transcription termination. Genome Res. 22, 1447-1456 (2012).
    • (2012) Genome Res , vol.22 , pp. 1447-1456
    • Grosso, A.R.1    De Almeida, S.F.2    Braga, J.3    Carmo-Fonseca, M.4
  • 84
    • 84891895641 scopus 로고    scopus 로고
    • The role of Ctk1 kinase in termination of small non-coding RNAs
    • Lenstra, T. L. et al. The role of Ctk1 kinase in termination of small non-coding RNAs. PLoS ONE 8, e80495 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e80495
    • Lenstra, T.L.1
  • 85
    • 84923172195 scopus 로고    scopus 로고
    • R-loops induce repressive chromatin marks over mammalian gene terminators
    • Skourti-Stathaki, K., Kamieniarz-Gdula, K. & Proudfoot, N. J. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516, 436-439 (2014).
    • (2014) Nature , vol.516 , pp. 436-439
    • Skourti-Stathaki, K.1    Kamieniarz-Gdula, K.2    Proudfoot, N.J.3
  • 86
    • 69449101422 scopus 로고    scopus 로고
    • Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation
    • Suraweera, A. et al. Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum. Mol. Genet. 18, 3384-3396 (2009).
    • (2009) Hum. Mol. Genet , vol.18 , pp. 3384-3396
    • Suraweera, A.1
  • 87
    • 84866366785 scopus 로고    scopus 로고
    • Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII
    • Wagschal, A. et al. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 150, 1147-1157 (2012).
    • (2012) Cell , vol.150 , pp. 1147-1157
    • Wagschal, A.1
  • 88
    • 67650340215 scopus 로고    scopus 로고
    • Novel tandem reporter quantifies RNA polymerase II termination in mammalian cells
    • Banerjee, A., Sammarco, M. C., Ditch, S., Wang, J. & Grabczyk, E. A. Novel tandem reporter quantifies RNA polymerase II termination in mammalian cells. PLoS ONE 4, e6193 (2009).
    • (2009) PLoS ONE , vol.4 , pp. e6193
    • Banerjee, A.1    Sammarco, M.C.2    Ditch, S.3    Wang, J.4    Grabczyk, E.A.5
  • 89
    • 84891801498 scopus 로고    scopus 로고
    • Human snRNA genes use polyadenylation factors to promote efficient transcription termination
    • O'Reilly, D. et al. Human snRNA genes use polyadenylation factors to promote efficient transcription termination. Nucleic Acids Res. 42, 264-275 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. 264-275
    • O'Reilly, D.1
  • 90
    • 26844493853 scopus 로고    scopus 로고
    • Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II
    • Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265-276 (2005).
    • (2005) Cell , vol.123 , pp. 265-276
    • Baillat, D.1
  • 91
    • 78751472594 scopus 로고    scopus 로고
    • A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3-end formation
    • Ezzeddine, N. et al. A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3-end formation. Mol. Cell. Biol. 31, 328-341 (2011).
    • (2011) Mol. Cell. Biol , vol.31 , pp. 328-341
    • Ezzeddine, N.1
  • 92
    • 84903592021 scopus 로고    scopus 로고
    • DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes
    • Yamamoto, J. et al. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nature Commun. 5, 4263 (2014).
    • (2014) Nature Commun , vol.5 , pp. 4263
    • Yamamoto, J.1
  • 93
    • 84890187791 scopus 로고    scopus 로고
    • CBC-ARS2 stimulates 3-end maturation of multiple RNA families and favors cap-proximal processing
    • Hallais, M. et al. CBC-ARS2 stimulates 3-end maturation of multiple RNA families and favors cap-proximal processing. Nature Struct. Mol. Biol. 20, 1358-1366 (2013).
    • (2013) Nature Struct. Mol. Biol , vol.20 , pp. 1358-1366
    • Hallais, M.1
  • 94
    • 34247552158 scopus 로고    scopus 로고
    • NELF interacts with CBC and participates in 3 end processing of replication-dependent histone mRNAs
    • Narita, T. et al. NELF interacts with CBC and participates in 3 end processing of replication-dependent histone mRNAs. Mol. Cell 26, 349-365 (2007).
    • (2007) Mol. Cell , vol.26 , pp. 349-365
    • Narita, T.1
  • 95
    • 84855877366 scopus 로고    scopus 로고
    • Ars2 promotes proper replication-dependent histone mRNA 3 end formation
    • Gruber, J. J. et al. Ars2 promotes proper replication-dependent histone mRNA 3 end formation. Mol. Cell 45, 87-98 (2012).
    • (2012) Mol. Cell , vol.45 , pp. 87-98
    • Gruber, J.J.1
  • 96
    • 84871898346 scopus 로고    scopus 로고
    • A complex containing the CPSF73 endonuclease and other polyadenylation factors associates with U7 snRNP and is recruited to histone pre-mRNA for 3-end processing
    • Yang, X.-C. et al. A complex containing the CPSF73 endonuclease and other polyadenylation factors associates with U7 snRNP and is recruited to histone pre-mRNA for 3-end processing. Mol. Cell. Biol. 33, 28-37 (2013).
    • (2013) Mol. Cell. Biol , vol.33 , pp. 28-37
    • Yang, X.-C.1
  • 97
    • 26244452759 scopus 로고    scopus 로고
    • The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing
    • Dominski, Z., Yang, X. & Marzluff, W. F. The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing. Cell 123, 37-48 (2005).
    • (2005) Cell , vol.123 , pp. 37-48
    • Dominski, Z.1    Yang, X.2    Marzluff, W.F.3
  • 98
    • 0022637897 scopus 로고
    • Autogenous regulation of the gene for transcription termination factor rho in Escherichia coli: Localization and function of its attenuators
    • Matsumoto, Y., Shigesada, K., Hirano, M. & Imai, M. Autogenous regulation of the gene for transcription termination factor rho in Escherichia coli: localization and function of its attenuators. J. Bacteriol. 166, 945-958 (1986).
    • (1986) J. Bacteriol , vol.166 , pp. 945-958
    • Matsumoto, Y.1    Shigesada, K.2    Hirano, M.3    Imai, M.4
  • 99
    • 79952295561 scopus 로고    scopus 로고
    • Mpk1 MAPK association with the Paf1 complex blocks Sen1-mediated premature transcription termination
    • Kim, K.-Y. & Levin, D. E. Mpk1 MAPK association with the Paf1 complex blocks Sen1-mediated premature transcription termination. Cell 144, 745-756 (2011).
    • (2011) Cell , vol.144 , pp. 745-756
    • Kim, K.-Y.1    Levin, D.E.2
  • 100
    • 47349099971 scopus 로고    scopus 로고
    • Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation
    • Kuehner, J. N. & Brow, D. A. Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol. Cell 31, 201-211 (2008).
    • (2008) Mol. Cell , vol.31 , pp. 201-211
    • Kuehner, J.N.1    Brow, D.A.2
  • 101
    • 50249183162 scopus 로고    scopus 로고
    • Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. Cerevisiae
    • Thiebaut, M. et al. Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Mol. Cell 31, 671-682 (2008).
    • (2008) Mol. Cell , vol.31 , pp. 671-682
    • Thiebaut, M.1
  • 102
    • 84861190412 scopus 로고    scopus 로고
    • The yeast Rpl9b gene is regulated by modulation between two modes of transcription termination
    • Gudipati, R. K., Neil, H., Feuerbach, F., Malabat, C. & Jacquier, A. The yeast Rpl9b gene is regulated by modulation between two modes of transcription termination. EMBO J. 31, 2427-2437 (2012).
    • (2012) EMBO J , vol.31 , pp. 2427-2437
    • Gudipati, R.K.1    Neil, H.2    Feuerbach, F.3    Malabat, C.4    Jacquier, A.5
  • 103
    • 84857395611 scopus 로고    scopus 로고
    • Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment
    • Bumgarner, S. L. et al. Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol. Cell 45, 470-482 (2012).
    • (2012) Mol. Cell , vol.45 , pp. 470-482
    • Bumgarner, S.L.1
  • 104
  • 105
    • 27744533201 scopus 로고    scopus 로고
    • Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae
    • Martens, J. A., Wu, P.-Y. J. & Winston, F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev. 19, 2695-2704 (2005).
    • (2005) Genes Dev , vol.19 , pp. 2695-2704
    • Martens, J.A.1    Wu, P.-Y.J.2    Winston, F.3
  • 106
    • 84866388360 scopus 로고    scopus 로고
    • Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast
    • Van Werven, F. J. et al. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 150, 1170-1181 (2012).
    • (2012) Cell , vol.150 , pp. 1170-1181
    • Van Werven, F.J.1
  • 107
    • 84872398729 scopus 로고    scopus 로고
    • Transcription-associated histone modifications and cryptic transcription
    • Smolle, M. & Workman, J. L. Transcription-associated histone modifications and cryptic transcription. Biochim. Biophys. Acta 1829, 84-97 (2013).
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 84-97
    • Smolle, M.1    Workman, J.L.2
  • 108
    • 60549114880 scopus 로고    scopus 로고
    • Widespread bidirectional promoters are the major source of cryptic transcripts in yeast
    • Neil, H. et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457, 1038-1042 (2009).
    • (2009) Nature , vol.457 , pp. 1038-1042
    • Neil, H.1
  • 109
    • 84881474625 scopus 로고    scopus 로고
    • Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality
    • Ntini, E. et al. Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nature Struct. Mol. Biol. 20, 923-928 (2013).
    • (2013) Nature Struct. Mol. Biol , vol.20 , pp. 923-928
    • Ntini, E.1
  • 110
    • 57849140661 scopus 로고    scopus 로고
    • Divergent transcription from active promoters
    • Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849-1851 (2008).
    • (2008) Science , vol.322 , pp. 1849-1851
    • Seila, A.C.1
  • 111
    • 84868139307 scopus 로고    scopus 로고
    • Defining the status of RNA polymerase at promoters
    • Core, L. J. et al. Defining the status of RNA polymerase at promoters. Cell Rep. 2, 1025-1035 (2012).
    • (2012) Cell Rep , vol.2 , pp. 1025-1035
    • Core, L.J.1
  • 112
    • 84868193627 scopus 로고    scopus 로고
    • Gene loops enhance transcriptional directionality
    • Tan-Wong, S. M. et al. Gene loops enhance transcriptional directionality. Science 338, 671-675 (2012).
    • (2012) Science , vol.338 , pp. 671-675
    • Tan-Wong, S.M.1
  • 113
    • 37249077649 scopus 로고    scopus 로고
    • Chromatin remodelling at promoters suppresses antisense transcription
    • Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031-1035 (2007).
    • (2007) Nature , vol.450 , pp. 1031-1035
    • Whitehouse, I.1    Rando, O.J.2    Delrow, J.3    Tsukiyama, T.4
  • 114
    • 77957852519 scopus 로고    scopus 로고
    • Chromatin remodeling around nucleosome-free regions leads to repression of noncoding RNA transcription
    • Yadon, A. N. et al. Chromatin remodeling around nucleosome-free regions leads to repression of noncoding RNA transcription. Mol. Cell. Biol. 30, 5110-5122 (2010).
    • (2010) Mol. Cell. Biol , vol.30 , pp. 5110-5122
    • Yadon, A.N.1
  • 115
    • 84903146392 scopus 로고    scopus 로고
    • A chromatin-based mechanism for limiting divergent noncoding transcription
    • Marquardt, S. et al. A chromatin-based mechanism for limiting divergent noncoding transcription. Cell 157, 1712-1723 (2014).
    • (2014) Cell , vol.157 , pp. 1712-1723
    • Marquardt, S.1
  • 116
    • 57849123049 scopus 로고    scopus 로고
    • RNA exosome depletion reveals transcription upstream of active human promoters
    • Preker, P. et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322, 1851-1854 (2008).
    • (2008) Science , vol.322 , pp. 1851-1854
    • Preker, P.1
  • 117
    • 84880510553 scopus 로고    scopus 로고
    • Promoter directionality is controlled by U1 snRNP and polyadenylation signals
    • Almada, A. E., Wu, X., Kriz, A. J., Burge, C. B. & Sharp, P. A. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499, 360-363 (2013).
    • (2013) Nature , vol.499 , pp. 360-363
    • Almada, A.E.1    Wu, X.2    Kriz, A.J.3    Burge, C.B.4    Sharp, P.A.5
  • 118
    • 84890145122 scopus 로고    scopus 로고
    • The human cap-binding complex is functionally connected to the nuclear RNA exosome
    • Andersen, P. R. et al. The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nature Struct. Mol. Biol. 20, 1367-1376 (2013). .
    • (2013) Nature Struct. Mol. Biol , vol.20 , pp. 1367-1376
    • Andersen, P.R.1
  • 119
    • 84860706859 scopus 로고    scopus 로고
    • MRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription
    • Brannan, K. et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol. Cell 46, 311-324 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 311-324
    • Brannan, K.1
  • 120
    • 81755187310 scopus 로고    scopus 로고
    • De novo origin of human protein-coding genes
    • Wu, D.-D., Irwin, D. M. & Zhang, Y.-P. De novo origin of human protein-coding genes. PLoS Genet. 7, e1002379 (2011).
    • (2011) PLoS Genet. , vol.7 , pp. e1002379
    • Wu, D.-D.1    Irwin, D.M.2    Zhang, Y.-P.3
  • 121
    • 48249103199 scopus 로고    scopus 로고
    • Structure of eukaryotic RNA polymerases
    • Cramer, P. et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 37, 337-352 (2008).
    • (2008) Annu. Rev. Biophys , vol.37 , pp. 337-352
    • Cramer, P.1
  • 122
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA polymerase II CTD cycle
    • Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541-546 (2009).
    • (2009) Mol. Cell , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 123
    • 84867160564 scopus 로고    scopus 로고
    • The RNA polymerase II CTD coordinates transcription and RNA processing
    • Hsin, J.-P. & Manley, J. L. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 26, 2119-2137 (2012).
    • (2012) Genes Dev , vol.26 , pp. 2119-2137
    • Hsin, J.-P.1    Manley, J.L.2
  • 124
    • 84888991588 scopus 로고    scopus 로고
    • The RNA polymerase II carboxy-terminal domain (CTD) code
    • Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456-8490 (2013).
    • (2013) Chem. Rev , vol.113 , pp. 8456-8490
    • Eick, D.1    Geyer, M.2
  • 125
    • 84856273602 scopus 로고    scopus 로고
    • A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes
    • Bataille, A. R. et al. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 45, 158-170 (2012).
    • (2012) Mol. Cell , vol.45 , pp. 158-170
    • Bataille, A.R.1
  • 126
    • 80555125095 scopus 로고    scopus 로고
    • RNAPII CTD phosphorylated on threonine-4 is required for histone mRNA 3 end processing
    • Hsin, J.-P., Sheth, A. & Manley, J. L. RNAPII CTD phosphorylated on threonine-4 is required for histone mRNA 3 end processing. Science 334, 683-686 (2011).
    • (2011) Science , vol.334 , pp. 683-686
    • Hsin, J.-P.1    Sheth, A.2    Manley, J.L.3
  • 127
    • 84862977456 scopus 로고    scopus 로고
    • CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II
    • Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723-1725 (2012).
    • (2012) Science , vol.336 , pp. 1723-1725
    • Mayer, A.1
  • 128
    • 70350031808 scopus 로고    scopus 로고
    • The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway
    • Singh, N. et al. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Mol. Cell 36, 255-266 (2009).
    • (2009) Mol. Cell , vol.36 , pp. 255-266
    • Singh, N.1
  • 129
    • 84888401056 scopus 로고    scopus 로고
    • Rrp47 functions in RNA surveillance and stable RNA processing when divorced from the exoribonuclease and exosome-binding domains of Rrp6
    • Garland, W., Feigenbutz, M., Turner, M. & Mitchell, P. Rrp47 functions in RNA surveillance and stable RNA processing when divorced from the exoribonuclease and exosome-binding domains of Rrp6. RNA 19, 1659-1668 (2013).
    • (2013) RNA , vol.19 , pp. 1659-1668
    • Garland, W.1    Feigenbutz, M.2    Turner, M.3    Mitchell, P.4
  • 130
    • 49349110521 scopus 로고    scopus 로고
    • Expression of human snRNA genes from beginning to end
    • Egloff, S., O'Reilly, D. & Murphy, S. Expression of human snRNA genes from beginning to end. Biochem. Soc. Trans. 36, 590-594 (2008).
    • (2008) Biochem. Soc. Trans. , vol.36 , pp. 590-594
    • Egloff, S.1    O'Reilly, D.2    Murphy, S.3
  • 131
    • 65249164132 scopus 로고    scopus 로고
    • Mechanisms that specify promoter nucleosome location and identity
    • Hartley, P. D.& Madhani, H.D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445-458 (2009).
    • (2009) Cell , vol.137 , pp. 445-458
    • Hartley, P.D.1    Madhani, H.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.