-
1
-
-
0037008045
-
Metformin: an update
-
[1] Kirpichnikov, D., McFarlane, S.I., Sowers, J.R., Metformin: an update. Ann. Intern. Med. 137 (2002), 25–33.
-
(2002)
Ann. Intern. Med.
, vol.137
, pp. 25-33
-
-
Kirpichnikov, D.1
McFarlane, S.I.2
Sowers, J.R.3
-
2
-
-
0033673203
-
Mechanism by which metformin reduces glucose production in type 2 diabetes
-
[2] Hundal, R.S., Krssak, M., Dufour, S., Laurent, D., Lebon, V., Chandramouli, V., Inzucchi, S.E., Schumann, W.C., Petersen, K.F., Landau, B.R., Shulman, G.I., Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49 (2000), 2063–2069.
-
(2000)
Diabetes
, vol.49
, pp. 2063-2069
-
-
Hundal, R.S.1
Krssak, M.2
Dufour, S.3
Laurent, D.4
Lebon, V.5
Chandramouli, V.6
Inzucchi, S.E.7
Schumann, W.C.8
Petersen, K.F.9
Landau, B.R.10
Shulman, G.I.11
-
4
-
-
84896769099
-
Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk
-
[4] Lien, F., Berthier, A., Bouchaert, E., Gheeraert, C., Alexandre, J., Porez, G., Prawitt, J., Dehondt, H., Ploton, M., Colin, S., Lucas, A., Patrice, A., Pattou, F., Diemer, H., Van Dorsselaer, A., Rachez, C., Kamilic, J., Groen, A.K., Staels, B., Lefebvre, P., Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J. Clin. Invest. 124 (2014), 1037–1051.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 1037-1051
-
-
Lien, F.1
Berthier, A.2
Bouchaert, E.3
Gheeraert, C.4
Alexandre, J.5
Porez, G.6
Prawitt, J.7
Dehondt, H.8
Ploton, M.9
Colin, S.10
Lucas, A.11
Patrice, A.12
Pattou, F.13
Diemer, H.14
Van Dorsselaer, A.15
Rachez, C.16
Kamilic, J.17
Groen, A.K.18
Staels, B.19
Lefebvre, P.20
more..
-
5
-
-
0034945357
-
Cholestatic jaundice associated with the use of metformin
-
[5] Desilets, D.J., Shorr, A.F., Moran, K.A., Holtzmuller, K.C., Cholestatic jaundice associated with the use of metformin. Am. J. Gastroenterol. 96 (2001), 2257–2258.
-
(2001)
Am. J. Gastroenterol.
, vol.96
, pp. 2257-2258
-
-
Desilets, D.J.1
Shorr, A.F.2
Moran, K.A.3
Holtzmuller, K.C.4
-
6
-
-
1942419322
-
Metformin-induced cholestatic hepatitis
-
[6] Nammour, F.E., Fayad, N.F., Peikin, S.R., Metformin-induced cholestatic hepatitis. Endocr. Pract. 9 (2003), 307–309.
-
(2003)
Endocr. Pract.
, vol.9
, pp. 307-309
-
-
Nammour, F.E.1
Fayad, N.F.2
Peikin, S.R.3
-
7
-
-
33144478528
-
Possible metformin-induced hepatotoxicity
-
[7] Kutoh, E., Possible metformin-induced hepatotoxicity. Am. J. Geriatr. Pharmacother. 3 (2005), 270–273.
-
(2005)
Am. J. Geriatr. Pharmacother.
, vol.3
, pp. 270-273
-
-
Kutoh, E.1
-
8
-
-
84896011251
-
Metformin-induced cholangiohepatitis
-
[8] Biyyani, R.S., Battula, S., Erhardt, C.A., Korkor, K., Metformin-induced cholangiohepatitis. BMJ Case Rep., 2009, 2009.
-
(2009)
BMJ Case Rep.
, vol.2009
-
-
Biyyani, R.S.1
Battula, S.2
Erhardt, C.A.3
Korkor, K.4
-
9
-
-
1242269851
-
Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms
-
[9] Chiang, J.Y., Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J. Hepatol. 40 (2004), 539–551.
-
(2004)
J. Hepatol.
, vol.40
, pp. 539-551
-
-
Chiang, J.Y.1
-
10
-
-
84877581095
-
Pleiotropic roles of bile acids in metabolism
-
[10] de Aguiar Vallim, T.Q., Tarling, E.J., Edwards, P.A., Pleiotropic roles of bile acids in metabolism. Cell Metab. 17 (2013), 657–669.
-
(2013)
Cell Metab.
, vol.17
, pp. 657-669
-
-
de Aguiar Vallim, T.Q.1
Tarling, E.J.2
Edwards, P.A.3
-
11
-
-
0034664729
-
Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis
-
[11] Sinal, C.J., Tohkin, M., Miyata, M., Ward, J.M., Lambert, G., Gonzalez, F.J., Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102 (2000), 731–744.
-
(2000)
Cell
, vol.102
, pp. 731-744
-
-
Sinal, C.J.1
Tohkin, M.2
Miyata, M.3
Ward, J.M.4
Lambert, G.5
Gonzalez, F.J.6
-
12
-
-
27844546989
-
Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
-
[12] Inagaki, T., Choi, M., Moschetta, A., Peng, L., Cummins, C.L., McDonald, J.G., Luo, G., Jones, S.A., Goodwin, B., Richardson, J.A., Gerard, R.D., Repa, J.J., Mangelsdorf, D.J., Kliewer, S.A., Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2 (2005), 217–225.
-
(2005)
Cell Metab.
, vol.2
, pp. 217-225
-
-
Inagaki, T.1
Choi, M.2
Moschetta, A.3
Peng, L.4
Cummins, C.L.5
McDonald, J.G.6
Luo, G.7
Jones, S.A.8
Goodwin, B.9
Richardson, J.A.10
Gerard, R.D.11
Repa, J.J.12
Mangelsdorf, D.J.13
Kliewer, S.A.14
-
13
-
-
0033843072
-
The hepatocyte nuclear factor 3 (HNF3 or FOXA) family in metabolism
-
[13] Kaestner, K.H., The hepatocyte nuclear factor 3 (HNF3 or FOXA) family in metabolism. Trends Endocrinol. Metab. 11 (2000), 281–285.
-
(2000)
Trends Endocrinol. Metab.
, vol.11
, pp. 281-285
-
-
Kaestner, K.H.1
-
14
-
-
25144482864
-
Foxa2 integrates the transcriptional response of the hepatocyte to fasting
-
[14] Zhang, L., Rubins, N.E., Ahima, R.S., Greenbaum, L.E., Kaestner, K.H., Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metab. 2 (2005), 141–148.
-
(2005)
Cell Metab.
, vol.2
, pp. 141-148
-
-
Zhang, L.1
Rubins, N.E.2
Ahima, R.S.3
Greenbaum, L.E.4
Kaestner, K.H.5
-
15
-
-
33750438123
-
The Foxa family of transcription factors in development and metabolism
-
[15] Friedman, J.R., Kaestner, K.H., The Foxa family of transcription factors in development and metabolism. Cell. Mol. Life Sci. 63 (2006), 2317–2328.
-
(2006)
Cell. Mol. Life Sci.
, vol.63
, pp. 2317-2328
-
-
Friedman, J.R.1
Kaestner, K.H.2
-
16
-
-
11144244418
-
Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes
-
[16] Wolfrum, C., Asilmaz, E., Luca, E., Friedman, J.M., Stoffel, M., Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432 (2004), 1027–1032.
-
(2004)
Nature
, vol.432
, pp. 1027-1032
-
-
Wolfrum, C.1
Asilmaz, E.2
Luca, E.3
Friedman, J.M.4
Stoffel, M.5
-
17
-
-
32444451567
-
Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion
-
[17] Wolfrum, C., Stoffel, M., Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab. 3 (2006), 99–110.
-
(2006)
Cell Metab.
, vol.3
, pp. 99-110
-
-
Wolfrum, C.1
Stoffel, M.2
-
18
-
-
49149090637
-
Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress
-
[18] Bochkis, I.M., Rubins, N.E., White, P., Furth, E.E., Friedman, J.R., Kaestner, K.H., Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nat. Med. 14 (2008), 828–836.
-
(2008)
Nat. Med.
, vol.14
, pp. 828-836
-
-
Bochkis, I.M.1
Rubins, N.E.2
White, P.3
Furth, E.E.4
Friedman, J.R.5
Kaestner, K.H.6
-
19
-
-
0033776792
-
Elevated levels of hepatocyte nuclear factor 3beta in mouse hepatocytes influence expression of genes involved in bile acid and glucose homeostasis
-
[19] Rausa, F.M., Tan, Y., Zhou, H., Yoo, K.W., Stolz, D.B., Watkins, S.C., Franks, R.R., Unterman, T.G., Costa, R.H., Elevated levels of hepatocyte nuclear factor 3beta in mouse hepatocytes influence expression of genes involved in bile acid and glucose homeostasis. Mol. Cell. Biol. 20 (2000), 8264–8282.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 8264-8282
-
-
Rausa, F.M.1
Tan, Y.2
Zhou, H.3
Yoo, K.W.4
Stolz, D.B.5
Watkins, S.C.6
Franks, R.R.7
Unterman, T.G.8
Costa, R.H.9
-
20
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
[20] Imai, S., Armstrong, C.M., Kaeberlein, M., Guarente, L., Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403 (2000), 795–800.
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
21
-
-
69449106304
-
SIRT1 and insulin resistance
-
[21] Liang, F., Kume, S., Koya, D., SIRT1 and insulin resistance. Nat. Rev. Endocrinol. 5 (2009), 367–373.
-
(2009)
Nat. Rev. Endocrinol.
, vol.5
, pp. 367-373
-
-
Liang, F.1
Kume, S.2
Koya, D.3
-
22
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
[22] Purushotham, A., Schug, T.T., Xu, Q., Surapureddi, S., Guo, X., Li, X., Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9 (2009), 327–338.
-
(2009)
Cell Metab.
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
23
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
[23] Li, X., Zhang, S., Blander, G., Tse, J.G., Krieger, M., Guarente, L., SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28 (2007), 91–106.
-
(2007)
Mol. Cell
, vol.28
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
Tse, J.G.4
Krieger, M.5
Guarente, L.6
-
24
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
-
[24] Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M.W., Guarente, L., Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429 (2004), 771–776.
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
Kurtev, M.2
Chung, N.3
Topark-Ngarm, A.4
Senawong, T.5
Machado De Oliveira, R.6
Leid, M.7
McBurney, M.W.8
Guarente, L.9
-
25
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
[25] Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., Hu, L.S., Cheng, H.L., Jedrychowski, M.P., Gygi, S.P., Sinclair, D.A., Alt, F.W., Greenberg, M.E., Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303 (2004), 2011–2015.
-
(2004)
Science
, vol.303
, pp. 2011-2015
-
-
Brunet, A.1
Sweeney, L.B.2
Sturgill, J.F.3
Chua, K.F.4
Greer, P.L.5
Lin, Y.6
Tran, H.7
Ross, S.E.8
Mostoslavsky, R.9
Cohen, H.Y.10
Hu, L.S.11
Cheng, H.L.12
Jedrychowski, M.P.13
Gygi, S.P.14
Sinclair, D.A.15
Alt, F.W.16
Greenberg, M.E.17
-
26
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
[26] Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., Puigserver, P., Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434 (2005), 113–118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
27
-
-
34547906123
-
Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
-
[27] Rodgers, J.T., Puigserver, P., Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 12861–12866.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 12861-12866
-
-
Rodgers, J.T.1
Puigserver, P.2
-
28
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
[28] Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M.F., Goodyear, L.J., Moller, D.E., Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108 (2001), 1167–1174.
-
(2001)
J. Clin. Invest.
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
Chen, Y.4
Shen, X.5
Fenyk-Melody, J.6
Wu, M.7
Ventre, J.8
Doebber, T.9
Fujii, N.10
Musi, N.11
Hirshman, M.F.12
Goodyear, L.J.13
Moller, D.E.14
-
29
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
[29] Shaw, R.J., Lamia, K.A., Vasquez, D., Koo, S.H., Bardeesy, N., Depinho, R.A., Montminy, M., Cantley, L.C., The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310 (2005), 1642–1646.
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
Koo, S.H.4
Bardeesy, N.5
Depinho, R.A.6
Montminy, M.7
Cantley, L.C.8
-
30
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
[30] Foretz, M., Hebrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F., Viollet, B., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120 (2010), 2355–2369.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
Hebrard, S.2
Leclerc, J.3
Zarrinpashneh, E.4
Soty, M.5
Mithieux, G.6
Sakamoto, K.7
Andreelli, F.8
Viollet, B.9
-
31
-
-
77956462423
-
Role of Sirtuin 1 in metabolic regulation
-
[31] Silva, J.P., Wahlestedt, C., Role of Sirtuin 1 in metabolic regulation. Drug Discov. Today 15 (2010), 781–791.
-
(2010)
Drug Discov. Today
, vol.15
, pp. 781-791
-
-
Silva, J.P.1
Wahlestedt, C.2
-
32
-
-
0036086509
-
Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis
-
[32] Kerr, T.A., Saeki, S., Schneider, M., Schaefer, K., Berdy, S., Redder, T., Shan, B., Russell, D.W., Schwarz, M., Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. Dev. Cell 2 (2002), 713–720.
-
(2002)
Dev. Cell
, vol.2
, pp. 713-720
-
-
Kerr, T.A.1
Saeki, S.2
Schneider, M.3
Schaefer, K.4
Berdy, S.5
Redder, T.6
Shan, B.7
Russell, D.W.8
Schwarz, M.9
-
33
-
-
67650488877
-
SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats
-
[33] Erion, D.M., Yonemitsu, S., Nie, Y., Nagai, Y., Gillum, M.P., Hsiao, J.J., Iwasaki, T., Stark, R., Weismann, D., Yu, X.X., Murray, S.F., Bhanot, S., Monia, B.P., Horvath, T.L., Gao, Q., Samuel, V.T., Shulman, G.I., SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 11288–11293.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 11288-11293
-
-
Erion, D.M.1
Yonemitsu, S.2
Nie, Y.3
Nagai, Y.4
Gillum, M.P.5
Hsiao, J.J.6
Iwasaki, T.7
Stark, R.8
Weismann, D.9
Yu, X.X.10
Murray, S.F.11
Bhanot, S.12
Monia, B.P.13
Horvath, T.L.14
Gao, Q.15
Samuel, V.T.16
Shulman, G.I.17
-
34
-
-
84894412290
-
Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice
-
[34] Geerling, J.J., Boon, M.R., van der Zon, G.C., van den Berg, S.A., van den Hoek, A.M., Lombes, M., Princen, H.M., Havekes, L.M., Rensen, P.C., Guigas, B., Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 63 (2014), 880–891.
-
(2014)
Diabetes
, vol.63
, pp. 880-891
-
-
Geerling, J.J.1
Boon, M.R.2
van der Zon, G.C.3
van den Berg, S.A.4
van den Hoek, A.M.5
Lombes, M.6
Princen, H.M.7
Havekes, L.M.8
Rensen, P.C.9
Guigas, B.10
-
35
-
-
84892709755
-
Metformin prevents hepatic steatosis by regulating the expression of adipose differentiation-related protein
-
[35] Liu, F., Wang, C., Zhang, L., Xu, Y., Jang, L., Gu, Y., Cao, X., Zhao, X., Ye, J., Li, Q., Metformin prevents hepatic steatosis by regulating the expression of adipose differentiation-related protein. Int. J. Mol. Med. 33 (2014), 51–58.
-
(2014)
Int. J. Mol. Med.
, vol.33
, pp. 51-58
-
-
Liu, F.1
Wang, C.2
Zhang, L.3
Xu, Y.4
Jang, L.5
Gu, Y.6
Cao, X.7
Zhao, X.8
Ye, J.9
Li, Q.10
-
36
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
[36] Cheng, H.L., Mostoslavsky, R., Saito, S., Manis, J.P., Gu, Y., Patel, P., Bronson, R., Appella, E., Alt, F.W., Chua, K.F., Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 10794–10799.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
Mostoslavsky, R.2
Saito, S.3
Manis, J.P.4
Gu, Y.5
Patel, P.6
Bronson, R.7
Appella, E.8
Alt, F.W.9
Chua, K.F.10
-
37
-
-
0032579292
-
Transcription factor-specific requirements for coactivators and their acetyltransferase functions
-
[37] Korzus, E., Torchia, J., Rose, D.W., Xu, L., Kurokawa, R., McInerney, E.M., Mullen, T.M., Glass, C.K., Rosenfeld, M.G., Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279 (1998), 703–707.
-
(1998)
Science
, vol.279
, pp. 703-707
-
-
Korzus, E.1
Torchia, J.2
Rose, D.W.3
Xu, L.4
Kurokawa, R.5
McInerney, E.M.6
Mullen, T.M.7
Glass, C.K.8
Rosenfeld, M.G.9
-
38
-
-
73649108251
-
Stable chromatin binding prevents FoxA acetylation, preserving FoxA chromatin remodeling
-
[38] Kohler, S., Cirillo, L.A., Stable chromatin binding prevents FoxA acetylation, preserving FoxA chromatin remodeling. J. Biol. Chem. 285 (2010), 464–472.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 464-472
-
-
Kohler, S.1
Cirillo, L.A.2
-
39
-
-
84884581542
-
SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and beta-cell formation
-
[39] Wang, R.H., Xu, X., Kim, H.S., Xiao, Z., Deng, C.X., SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and beta-cell formation. Int. J. Biol. Sci. 9 (2013), 934–946.
-
(2013)
Int. J. Biol. Sci.
, vol.9
, pp. 934-946
-
-
Wang, R.H.1
Xu, X.2
Kim, H.S.3
Xiao, Z.4
Deng, C.X.5
-
40
-
-
84875382650
-
Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism
-
[40] von Meyenn, F., Porstmann, T., Gasser, E., Selevsek, N., Schmidt, A., Aebersold, R., Stoffel, M., Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism. Cell Metab. 17 (2013), 436–447.
-
(2013)
Cell Metab.
, vol.17
, pp. 436-447
-
-
von Meyenn, F.1
Porstmann, T.2
Gasser, E.3
Selevsek, N.4
Schmidt, A.5
Aebersold, R.6
Stoffel, M.7
-
41
-
-
84902176868
-
SIRT1 mediates FOXA2 breakdown by deacetylation in a nutrient-dependent manner
-
[41] van Gent, R., Di Sanza, C., van den Broek, N.J., Fleskens, V., Veenstra, A., Stout, G.J., Brenkman, A.B., SIRT1 mediates FOXA2 breakdown by deacetylation in a nutrient-dependent manner. PLoS One, 9, 2014, e98438.
-
(2014)
PLoS One
, vol.9
-
-
van Gent, R.1
Di Sanza, C.2
van den Broek, N.J.3
Fleskens, V.4
Veenstra, A.5
Stout, G.J.6
Brenkman, A.B.7
-
42
-
-
84860009972
-
Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1alpha/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice
-
[42] Purushotham, A., Xu, Q., Lu, J., Foley, J.F., Yan, X., Kim, D.H., Kemper, J.K., Li, X., Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1alpha/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice. Mol. Cell. Biol. 32 (2012), 1226–1236.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 1226-1236
-
-
Purushotham, A.1
Xu, Q.2
Lu, J.3
Foley, J.F.4
Yan, X.5
Kim, D.H.6
Kemper, J.K.7
Li, X.8
-
43
-
-
70350606061
-
FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states
-
[43] Kemper, J.K., Xiao, Z., Ponugoti, B., Miao, J., Fang, S., Kanamaluru, D., Tsang, S., Wu, S.Y., Chiang, C.M., Veenstra, T.D., FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10 (2009), 392–404.
-
(2009)
Cell Metab.
, vol.10
, pp. 392-404
-
-
Kemper, J.K.1
Xiao, Z.2
Ponugoti, B.3
Miao, J.4
Fang, S.5
Kanamaluru, D.6
Tsang, S.7
Wu, S.Y.8
Chiang, C.M.9
Veenstra, T.D.10
|