메뉴 건너뛰기




Volumn 8, Issue 2, 2016, Pages

Tensors for data mining and data fusion: Models, applications, and scalable algorithms

Author keywords

Multi Aspect data; Multi way analysis; Tensor decomposition; Tensor factorization; Tensors

Indexed keywords

ARTS COMPUTING; BIG DATA; DATA FUSION; TENSORS;

EID: 84994031868     PISSN: 21576904     EISSN: 21576912     Source Type: Journal    
DOI: 10.1145/2915921     Document Type: Article
Times cited : (401)

References (150)
  • 1
    • 34547844161 scopus 로고    scopus 로고
    • Multiway analysis of epilepsy tensors
    • 2007
    • Evrim Acar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and B ulent Yener. 2007. Multiway analysis of epilepsy tensors. Bioinformatics 23, 13 (2007), i10-i18. DOI:http://dx.doi.org/10.1093/bioinformatics/btm210.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. i10-i18
    • Acar, E.1    Aykut-Bingol, C.2    Bingol, H.3    Bro, R.4    Yener, B.U.5
  • 4
    • 79951898361 scopus 로고    scopus 로고
    • A scalable optimization approach for fitting canonical tensor decompositions
    • 2011
    • Evrim Acar, Daniel M. Dunlavy, and Tamara G. Kolda. 2011. A scalable optimization approach for fitting canonical tensor decompositions. Journal of Chemometrics 25, 2 (2011), 67-86. DOI:http://dx.doi.org/10.1002/cem.1335.
    • (2011) Journal of Chemometrics , vol.25 , Issue.2 , pp. 67-86
    • Acar, E.1    Dunlavy, D.M.2    Kolda, T.G.3
  • 6
    • 79952446596 scopus 로고    scopus 로고
    • Scalable tensor factorizations for incomplete data
    • March 2011
    • Evrim Acar, Daniel M. Dunlavy, Tamara G. Kolda, and Morten Mørup. 2011. Scalable tensor factorizations for incomplete data. Chemometrics and Intelligent Laboratory Systems 106, 1 (March 2011), 41-56. DOI:http://dx.doi.org/10.1016/j.chemolab.2010.08.004.
    • (2011) Chemometrics and Intelligent Laboratory Systems , vol.106 , Issue.1 , pp. 41-56
    • Acar, E.1    Dunlavy, D.M.2    Kolda, T.G.3    Mørup, M.4
  • 11
    • 84859150999 scopus 로고    scopus 로고
    • Coupled analysis of in vitro and histology tissue samples to quantify structure-function relationship
    • 2012
    • Evrim Acar, George Plopper, and B ulent Yener. 2012. Coupled analysis of in vitro and histology tissue samples to quantify structure-function relationship. PloS One 7, 3 (2012), e32227. DOI:http://dx.doi.org/10.1371/journal.pone.0032227.
    • (2012) PloS One , vol.7 , Issue.3 , pp. e32227
    • Acar, E.1    Plopper, G.2    Yener, B.U.3
  • 12
    • 57049095978 scopus 로고    scopus 로고
    • Unsupervised multiway data analysis: A literature survey
    • 2009
    • Evrim Acar and B ulent Yener. 2009. Unsupervised multiway data analysis: A literature survey. IEEE Transactions on Knowledge and Data Engineering, 21, 1 (2009), 6-20. DOI:http://dx.doi.org/10.1109/tkde.2008.112.
    • (2009) IEEE Transactions on Knowledge and Data Engineering , vol.21 , Issue.1 , pp. 6-20
    • Acar, E.1    Yener, B.U.2
  • 19
    • 49749096526 scopus 로고    scopus 로고
    • Efficient matlab computations with sparse and factored tensors
    • Dec. 2007
    • Brett W. Bader and Tamara G. Kolda. 2007. Efficient MATLAB computations with sparse and factored tensors. SIAM Journal on Scientific Computing 30, 1 (Dec. 2007), 205-231. DOI:http://dx.doi.org/10.1137/060676489.
    • (2007) SIAM Journal on Scientific Computing , vol.30 , Issue.1 , pp. 205-231
    • Bader, B.W.1    Kolda, T.G.2
  • 21
    • 84869490650 scopus 로고    scopus 로고
    • Black box approximation of tensors in hierarchical tucker format
    • 2013
    • Jonas Ballani, Lars Grasedyck, and Melanie Kluge. 2013. Black box approximation of tensors in hierarchical Tucker format. Linear Algebra and Its Applications 438, 2 (2013), 639-657. DOI:http://dx.doi.org/10.1016/j.laa.2011.08.010.
    • (2013) Linear Algebra and Its Applications , vol.438 , Issue.2 , pp. 639-657
    • Ballani, J.1    Grasedyck, L.2    Kluge, M.3
  • 25
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • 2011
    • Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1 (2011), 1-122. DOI:http://dx.doi.org/10.1561/2200000016.
    • (2011) Foundations and Trends in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 26
    • 0018011435 scopus 로고
    • Kronecker products and matrix calculus in system theory
    • 1978
    • John W. Brewer. 1978. Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems 25, 9 (1978), 772-781. DOI:http://dx.doi.org/10.1109/tcs.1978.1084534.
    • (1978) IEEE Transactions on Circuits and Systems , vol.25 , Issue.9 , pp. 772-781
    • Brewer, J.W.1
  • 27
    • 0004050741 scopus 로고    scopus 로고
    • Ph.D. Dissertation. Københavns Universitet'Københavns Universitet', LUKKET: 2012 Det Biovidenskabelige Fakultet for Fødevarer, Veterinærmedicin og NaturressourcerFaculty of Life Sciences, LUKKET: 2012 Institut for FødevarevidenskabDepartment of Food Science, 2012 Institut for Fødevarevidenskab, 2012 Kvalitet og TeknologiDepartment of Food Science, Quality & Technology
    • Rasmus Bro. 1998. Multi-way Analysis in the Food Industry: Models, Algorithms, and Applications. Ph.D. Dissertation. Københavns Universitet'Københavns Universitet', LUKKET: 2012 Det Biovidenskabelige Fakultet for Fødevarer, Veterinærmedicin og NaturressourcerFaculty of Life Sciences, LUKKET: 2012 Institut for FødevarevidenskabDepartment of Food Science, 2012 Institut for Fødevarevidenskab, 2012 Kvalitet og TeknologiDepartment of Food Science, Quality & Technology.
    • (1998) Multi-way Analysis in the Food Industry: Models, Algorithms, and Applications
    • Bro, R.1
  • 28
    • 0032563557 scopus 로고    scopus 로고
    • Improving the speed of multiway algorithms: Part II: Compression
    • 1998
    • Rasmus Bro and Claus A. Andersson. 1998. Improving the speed of multiway algorithms: Part II: Compression. Chemometrics and Intelligent Laboratory Systems 42, 1 (1998), 105-113. DOI:http://dx.doi.org/10.1016/s0169-7439(98)00011-2.
    • (1998) Chemometrics and Intelligent Laboratory Systems , vol.42 , Issue.1 , pp. 105-113
    • Bro, R.1    Andersson, C.A.2
  • 29
    • 0038685059 scopus 로고    scopus 로고
    • A new efficient method for determining the number of components in parafac models
    • 2003
    • Rasmus Bro and Henk A. L. Kiers. 2003. A new efficient method for determining the number of components in PARAFAC models. Journal of Chemometrics 17, 5 (2003), 274-286. DOI:http://dx.doi.org/10.1002/cem.801.
    • (2003) Journal of Chemometrics , vol.17 , Issue.5 , pp. 274-286
    • Bro, R.1    Kiers, H.A.L.2
  • 30
    • 77953154158 scopus 로고    scopus 로고
    • Generalizing the column-row matrix decomposition to multi-way arrays
    • 2010
    • Cesar F. Caiafa and Andrzej Cichocki. 2010. Generalizing the column-row matrix decomposition to multi-way arrays. Linear Algebra Applications 433, 3 (2010), 557-573. DOI:http://dx.doi.org/10.1016/j.laa.2010.03.020.
    • (2010) Linear Algebra Applications , vol.433 , Issue.3 , pp. 557-573
    • Caiafa, C.F.1    Cichocki, A.2
  • 31
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an n-way generalization of 'eckart-young' decomposition
    • 1970
    • J. Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual differences in multidimensional scaling via an N-way generalization of 'Eckart-Young' decomposition. Psychometrika 35, 3 (1970), 283-319. DOI:http://dx.doi.org/10.1007/bf02310791.
    • (1970) Psychometrika , vol.35 , Issue.3 , pp. 283-319
    • Carroll, J.D.1    Chang, J.-J.2
  • 32
    • 34250252877 scopus 로고
    • Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters
    • 1980
    • J. Douglas Carroll, Sandra Pruzansky, and Joseph B. Kruskal. 1980. CANDELINC: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters. Psychometrika 45, 1 (1980), 3-24. DOI:http://dx.doi.org/10.1007/bf02293596.
    • (1980) Psychometrika , vol.45 , Issue.1 , pp. 3-24
    • Carroll, J.D.1    Pruzansky, S.2    Kruskal, J.B.3
  • 36
    • 84871551012 scopus 로고    scopus 로고
    • On tensors, sparsity, and nonnegative factorizations
    • 2012
    • Eric C. Chi and Tamara G. Kolda. 2012. On tensors, sparsity, and nonnegative factorizations. SIAM Journal of Matrix Analysis & Applications 33, 4 (2012), 1272-1299. DOI:http://dx.doi.org/10.1137/110859063.
    • (2012) SIAM Journal of Matrix Analysis & Applications , vol.33 , Issue.4 , pp. 1272-1299
    • Chi, E.C.1    Kolda, T.G.2
  • 37
    • 84867325862 scopus 로고    scopus 로고
    • On generic identifiability of 3-Tensors of small rank
    • 2012
    • Luca Chiantini and Giorgio Ottaviani. 2012. On generic identifiability of 3-Tensors of small rank. SIAM Journal of Matrix Analysis & Applications 33, 3 (2012), 1018-1037. DOI:http://dx.doi.org/10.1137/110829180.
    • (2012) SIAM Journal of Matrix Analysis & Applications , vol.33 , Issue.3 , pp. 1018-1037
    • Chiantini, L.1    Ottaviani, G.2
  • 38
    • 84937955938 scopus 로고    scopus 로고
    • Dfacto: Distributed factorization of tensors. In advances in neural information processing systems 27
    • Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds
    • Joon Hee Choi and S. Vishwanathan. 2014. DFacTo: Distributed factorization of tensors. In Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, 1296-1304. http://papers.nips.cc/paper/5395-dfacto-distributed-factorization-of-Tensors.pdf.
    • (2014) Curran Associates , pp. 1296-1304
    • Choi, J.H.1    Vishwanathan, S.2
  • 39
    • 85032780162 scopus 로고    scopus 로고
    • Tensor decompositions for signal processing applications: From twoway to multiway component analysis
    • 2015
    • Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao, Cesar Caiafa, and Huy Anh Phan. 2015. Tensor decompositions for signal processing applications: From twoway to multiway component analysis. IEEE Signal Processing Magazine 32, 2 (2015), 145-163. DOI:http://dx.doi.org/10.1109/msp.2013.2297439.
    • (2015) IEEE Signal Processing Magazine , vol.32 , Issue.2 , pp. 145-163
    • Cichocki, A.1    Mandic, D.2    Lathauwer, L.D.3    Zhou, G.4    Zhao, Q.5    Caiafa, C.6    Phan, H.A.7
  • 40
    • 84891283756 scopus 로고    scopus 로고
    • Nonnegative matrix and tensor factorizations: Applications to exploratory multi-way data analysis and blind source separation
    • Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and S. Amari. 2009. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. John Wiley & Sons.
    • (2009) John Wiley & Sons
    • Cichocki, A.1    Zdunek, R.2    Phan, A.H.3    Amari, S.4
  • 41
    • 84916619989 scopus 로고    scopus 로고
    • Fast decomposition of large nonnegative tensors
    • 2015
    • Jeremy E. Cohen, Rodrigo Cabral Farias, and Pierre Comon. 2015. Fast decomposition of large nonnegative tensors. IEEE Signal Processing Letters 22, 7 (2015), 862-866. DOI:http://dx.doi.org/10.1109/lsp.2014.2374838.
    • (2015) IEEE Signal Processing Letters , vol.22 , Issue.7 , pp. 862-866
    • Cohen, J.E.1    Farias, R.C.2    Comon, P.3
  • 47
    • 33751097630 scopus 로고    scopus 로고
    • Fast monte carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition
    • 2006
    • Petros Drineas, Ravi Kannan, and Michael W. Mahoney. 2006. Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition. SIAM Journal on Computing 36, 1 (2006), 184. DOI:http://dx.doi.org/10.1137/s0097539704442702.
    • (2006) SIAM Journal on Computing , vol.36 , Issue.1 , pp. 184
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 48
    • 79952552980 scopus 로고    scopus 로고
    • Temporal link prediction using matrix and tensor factorizations
    • Feb. 2011
    • Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar. 2011. Temporal link prediction using matrix and tensor factorizations. ACM Transactions on Knowledge Discovery from Data 5, 2 (Feb. 2011). DOI:http://dx.doi.org/10.1145/1921632.1921636.
    • (2011) ACM Transactions on Knowledge Discovery from Data , vol.5 , Issue.2
    • Dunlavy, D.M.1    Kolda, T.G.2    Acar, E.3
  • 50
    • 84921067095 scopus 로고    scopus 로고
    • Link prediction in heterogeneous data via generalized coupled tensor factorization
    • 2015
    • Beyza Ermiş, Evrim Acar, and A. Taylan Cemgil. 2015. Link prediction in heterogeneous data via generalized coupled tensor factorization. Data Mining and Knowledge Discovery 29, 1 (2015), 203-236. DOI:http://dx.doi.org/10.1007/s10618-013-0341-y.
    • (2015) Data Mining and Knowledge Discovery , vol.29 , Issue.1 , pp. 203-236
    • Ermiş, B.1    Acar, E.2    Cemgil, A.T.3
  • 51
    • 77956032667 scopus 로고    scopus 로고
    • Hierarchical singular value decomposition of tensors
    • 2010
    • Lars Grasedyck. 2010. Hierarchical singular value decomposition of tensors. SIAM Journal of Matrix Analysis & Applications 31, 4 (2010), 2029-2054. DOI:http://dx.doi.org/10.1137/090764189.
    • (2010) SIAM Journal of Matrix Analysis & Applications , vol.31 , Issue.4 , pp. 2029-2054
    • Grasedyck, L.1
  • 52
    • 84892949294 scopus 로고    scopus 로고
    • A literature survey of low-rank tensor approximation techniques
    • 2013
    • Lars Grasedyck, Daniel Kressner, and Christine Tobler. 2013. A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36, 1 (2013), 53-78. DOI:http://dx.doi.org/10.1002/gamm.201310004.
    • (2013) GAMM-Mitteilungen , vol.36 , Issue.1 , pp. 53-78
    • Grasedyck, L.1    Kressner, D.2    Tobler, C.3
  • 53
    • 77952289640 scopus 로고    scopus 로고
    • A new scheme for the tensor representation
    • 2009
    • Wolfgang Hackbusch and Stefan K uhn. 2009. A new scheme for the tensor representation. Journal of Fourier Analysis and Applications 15, 5 (2009), 706-722. DOI:http://dx.doi.org/10.1007/s00041-009-9094-9.
    • (2009) Journal of Fourier Analysis and Applications , vol.15 , Issue.5 , pp. 706-722
    • Hackbusch, W.1    Uhn, S.K.2
  • 54
    • 84940448141 scopus 로고    scopus 로고
    • Newton-based optimization for kullback- leibler nonnegative tensor factorizations
    • April 2015
    • Samantha Hansen, Todd Plantenga, and Tamara G. Kolda. 2015. Newton-based optimization for Kullback- Leibler nonnegative tensor factorizations. Optimization Methods and Software 30, 5 (April 2015), 1002- 1029. DOI:http://dx.doi.org/10.1080/10556788.2015.1009977.
    • (2015) Optimization Methods and Software , vol.30 , Issue.5 , pp. 1002-1029
    • Hansen, S.1    Plantenga, T.2    Kolda, T.G.3
  • 55
    • 0002740437 scopus 로고
    • Foundations of the parafac procedure: Models and conditions for an "explanatory" multimodal factor analysis
    • 1970
    • Richard A. Harshman. 1970. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics 16 (1970), 1-84.
    • (1970) UCLA Working Papers in Phonetics , vol.16 , pp. 1-84
    • Harshman, R.A.1
  • 56
    • 84932743817 scopus 로고
    • Parafac2: Mathematical and technical notes
    • 1972
    • Richard A. Harshman. 1972. PARAFAC2: Mathematical and technical notes. UCLA Working Papers in Phonetics 22 (1972), 30-44.
    • (1972) UCLA Working Papers in Phonetics , vol.22 , pp. 30-44
    • Harshman, R.A.1
  • 59
    • 0142043333 scopus 로고    scopus 로고
    • Shifted factor analysis-part i: Models and properties
    • 2003
    • Richard A. Harshman, Sungjin Hong, and Margaret E. Lundy. 2003. Shifted factor analysis-Part I: Models and properties. Journal of Chemometrics 17, 7 (2003), 363-378. DOI:http://dx.doi.org/10.1002/cem.808.
    • (2003) Journal of Chemometrics , vol.17 , Issue.7 , pp. 363-378
    • Harshman, R.A.1    Hong, S.2    Lundy, M.E.3
  • 60
    • 84957891835 scopus 로고    scopus 로고
    • Dusk: A dual structure-preserving kernel for supervised tensor learning with applications to neuroimages
    • 2014
    • Lifang He, Xiangnan Kong, S. Yu Philip, Ann B. Ragin, Zhifeng Hao, and Xiaowei Yang. 2014. Dusk: A dual structure-preserving kernel for supervised tensor learning with applications to neuroimages. Matrix 3, 1 (2014), 2. DOI:http://dx.doi.org/10.1137/1.9781611973440.15.
    • (2014) Matrix , vol.3 , Issue.1 , pp. 2
    • He, L.1    Kong, X.2    Philip, S.Y.3    Ragin, A.B.4    Hao, Z.5    Yang, X.6
  • 61
    • 85162707890 scopus 로고
    • The expression of a tensor or a polyadic as a sum of products
    • 1927
    • Frank L. Hitchcock. 1927. The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics 6, 1 (1927), 164-189. DOI:http://dx.doi.org/10.1002/sapm192761164.
    • (1927) Journal of Mathematics and Physics , vol.6 , Issue.1 , pp. 164-189
    • Hitchcock, F.L.1
  • 68
    • 4344616103 scopus 로고    scopus 로고
    • Kruskal's permutation lemma and the identification of candecomp/parafac and bilinear models with constant modulus constraints
    • 2004
    • Tao Jiang and Nicholas D. Sidiropoulos. 2004. Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints. IEEE Transactions on Signal Processing 52, 9 (2004), 2625-2636. DOI:http://dx.doi.org/10.1109/tsp.2004.832022.
    • (2004) IEEE Transactions on Signal Processing , vol.52 , Issue.9 , pp. 2625-2636
    • Jiang, T.1    Sidiropoulos, N.D.2
  • 71
    • 0000615423 scopus 로고
    • An alternating least squares algorithm for parafac2 and three-way dedicom
    • 1993
    • Henk A. L. Kiers. 1993. An alternating least squares algorithm for PARAFAC2 and three-way DEDICOM. Computational Statistics & Data Analysis 16, 1 (1993), 103-118. DOI:http://dx.doi.org/10.1016/0167-9473(93)90247-q.
    • (1993) Computational Statistics & Data Analysis , vol.16 , Issue.1 , pp. 103-118
    • Kiers, H.A.L.1
  • 72
    • 0038118127 scopus 로고    scopus 로고
    • A fast method for choosing the numbers of components in tucker3 analysis
    • 2003
    • Henk A. L. Kiers and Albert Kinderen. 2003. A fast method for choosing the numbers of components in Tucker3 analysis. British Journal of Mathematical and Statistical Psychology 56, 1 (2003), 119-125. DOI:http://dx.doi.org/10.1348/000711003321645386.
    • (2003) British Journal of Mathematical and Statistical Psychology , vol.56 , Issue.1 , pp. 119-125
    • Kiers, H.A.L.1    Kinderen, A.2
  • 73
    • 0031517826 scopus 로고    scopus 로고
    • Weighted least squares fitting using ordinary least squares algorithms
    • June 1997
    • Henk A. L. Kiers. 1997. Weighted least squares fitting using ordinary least squares algorithms. Psychometrika 62, 2 (June 1997), 215-266. DOI:http://dx.doi.org/10.1007/BF02295279.
    • (1997) Psychometrika , vol.62 , Issue.2 , pp. 215-266
    • Kiers, H.A.L.1
  • 74
    • 84871037251 scopus 로고    scopus 로고
    • Decomposition-by-normalization (dbn): Leveraging approximate functional dependencies for efficient tensor decomposition
    • Mijung Kim and K. Selcuk Candan. 2012. Decomposition-by-normalization (DBN): Leveraging approximate functional dependencies for efficient tensor decomposition. In Proceedings of the 21st ACM International Conference on Information and KnowledgeManagement. ACM, 355-364. DOI:http://dx.doi.org/10.1145/2396761.2396809.
    • (2012) Proceedings of the 21st ACM International Conference on Information and KnowledgeManagement. ACM , pp. 355-364
    • Kim, M.1    Candan, K.S.2
  • 75
    • 0036018642 scopus 로고    scopus 로고
    • On the best rank-1 approximation of higher-order supersymmetric tensors
    • 2002
    • Eleftherios Kofidis and Phillip A. Regalia. 2002. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM Journal on Matrix Analysis & Applications 23, 3 (2002), 863-884. DOI:http://dx.doi.org/10.1137/s0895479801387413.
    • (2002) SIAM Journal on Matrix Analysis & Applications , vol.23 , Issue.3 , pp. 863-884
    • Kofidis, E.1    Regalia, P.A.2
  • 76
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • 2009
    • Tamara G. Kolda and Brett W. Bader. 2009. Tensor decompositions and applications. SIAM Reviews 51, 3 (2009). DOI:http://dx.doi.org/10.1137/07070111x.
    • (2009) SIAM Reviews , vol.51 , Issue.3
    • Kolda, T.G.1    Bader, B.W.2
  • 78
    • 84856302455 scopus 로고    scopus 로고
    • Shifted power method for computing tensor eigenpairs
    • Oct. 2011
    • Tamara G. Kolda and Jackson R. Mayo. 2011. Shifted power method for computing tensor eigenpairs. SIAM Journal on Matrix Analysis & Applications 32, 4 (Oct. 2011), 1095-1124. DOI:http://dx.doi.org/10.1137/100801482.
    • (2011) SIAM Journal on Matrix Analysis & Applications , vol.32 , Issue.4 , pp. 1095-1124
    • Kolda, T.G.1    Mayo, J.R.2
  • 80
    • 84856302589 scopus 로고    scopus 로고
    • Htucker-A matlab toolbox for tensors in hierarchical tucker format
    • Daniel Kressner and Christine Tobler. 2012. Htucker-A matlab toolbox for tensors in hierarchical Tucker format. Mathicse, EPF Lausanne (2012).
    • (2012) Mathicse, EPF Lausanne (2012
    • Kressner, D.1    Tobler, C.2
  • 81
    • 48749101457 scopus 로고
    • Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
    • 1977
    • Joseph B. Kruskal. 1977. Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and Its Applications 18, 2 (1977), 95-138. DOI:http://dx.doi.org/10.1016/0024-3795(77)90069-6.
    • (1977) Linear Algebra and Its Applications , vol.18 , Issue.2 , pp. 95-138
    • Kruskal, J.B.1
  • 82
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • 1999
    • Daniel D. Lee and H. Sebastian Seung. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401, 6755 (1999), 788-791. DOI:http://dx.doi.org/10.1038/44565.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 83
    • 84941923446 scopus 로고    scopus 로고
    • Parallel algorithms for constrained tensor factorization via alternating direction method of multipliers
    • 2015
    • Athanasios P. Liavas and Nicholas D. Sidiropoulos. 2015. Parallel algorithms for constrained tensor factorization via alternating direction method of multipliers. IEEE Transactions on Signal Processing, 63, 20 (2015), 5450-5463. DOI:http://dx.doi.org/10.1109/tsp.2015.2454476.
    • (2015) IEEE Transactions on Signal Processing , vol.63 , Issue.20 , pp. 5450-5463
    • Liavas, A.P.1    Sidiropoulos, N.D.2
  • 86
    • 79952194000 scopus 로고    scopus 로고
    • A survey of multilinear subspace learning for tensor data
    • 2011
    • Haiping Lu, Konstantinos N. Plataniotis, and Anastasios N. Venetsanopoulos. 2011. A survey of multilinear subspace learning for tensor data. Pattern Recognition 44, 7 (2011), 1540-1551. DOI:http://dx.doi.org/10.1016/j.patcog.2011.01.004.
    • (2011) Pattern Recognition , vol.44 , Issue.7 , pp. 1540-1551
    • Lu, H.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 87
    • 84994043170 scopus 로고    scopus 로고
    • Machine Learning Department
    • Machine Learning Department. 2016. CarnegieMellonUniversity. Read theWeb. http://rtw.ml.cmu.edu/rtw/.(Lastaccessed:2/13/2016).
    • (2016) CarnegieMellonUniversity. Read TheWeb
  • 88
  • 91
    • 84939566798 scopus 로고    scopus 로고
    • Clustering boolean tensors
    • 2015
    • Saskia Metzler and Pauli Miettinen. 2015. Clustering boolean tensors. Data Mining and Knowledge Discovery 29, 5 (2015), 1343-1373. DOI:http://dx.doi.org/10.1007/s10618-015-0420-3.
    • (2015) Data Mining and Knowledge Discovery , vol.29 , Issue.5 , pp. 1343-1373
    • Metzler, S.1    Miettinen, P.2
  • 94
    • 70349663945 scopus 로고    scopus 로고
    • Automatic relevance determination for multi-way models
    • 2009
    • Morten Mørup and Lars Kai Hansen. 2009. Automatic relevance determination for multi-way models. Journal of Chemometrics 23, 7-8 (2009), 352-363. DOI:http://dx.doi.org/10.1002/cem.1223.
    • (2009) Journal of Chemometrics , vol.23 , Issue.7-8 , pp. 352-363
    • Mørup, M.1    Hansen, L.K.2
  • 95
    • 55349121475 scopus 로고    scopus 로고
    • Shift-invariant multilinear decomposition of neuroimaging data
    • 2008
    • Morten Mørup, Lars Kai Hansen, Sidse Marie Arnfred, Lek-Heng Lim, and Kristoffer Hougaard Madsen. 2008. Shift-invariant multilinear decomposition of neuroimaging data. NeuroImage 42, 4 (2008), 1439- 1450. DOI:http://dx.doi.org/10.1016/j.neuroimage.2008.05.062.
    • (2008) NeuroImage , vol.42 , Issue.4 , pp. 1439-1450
    • Mørup, M.1    Hansen, L.K.2    Arnfred, S.M.3    Lim, L.-H.4    Madsen, K.H.5
  • 98
    • 84864537879 scopus 로고    scopus 로고
    • Tensor factorization using auxiliary information
    • 2012
    • Atsuhiro Narita, Kohei Hayashi, Ryota Tomioka, and Hisashi Kashima. 2012. Tensor factorization using auxiliary information. Data Mining and Knowledge Discovery 25, 2 (2012), 298-324. DOI:http://dx.doi.org/10.1007/978-3-642-23783-632.
    • (2012) Data Mining and Knowledge Discovery , vol.25 , Issue.2 , pp. 298-324
    • Narita, A.1    Hayashi, K.2    Tomioka, R.3    Kashima, H.4
  • 101
    • 77955837319 scopus 로고    scopus 로고
    • Sidiropoulos, and alexandros potamianos. 2010. Batch and adaptive parafac-based blind separation of convolutive speech mixtures
    • 2010
    • Dimitri Nion, Kleanthis N. Mokios, Nicholas D. Sidiropoulos, and Alexandros Potamianos. 2010. Batch and adaptive PARAFAC-based blind separation of convolutive speech mixtures. IEEE Transactions on Audio, Speech, and Language Processing, 18, 6 (2010), 1193-1207. DOI:http://dx.doi.org/10.1109/tasl.2009.2031694.
    • IEEE Transactions on Audio, Speech, and Language Processing , vol.18 , Issue.6 , pp. 1193-1207
    • Nion, D.1    Mokios, K.N.2    Nicholas, D.3
  • 102
    • 66849113522 scopus 로고    scopus 로고
    • Adaptive algorithms to track the parafac decomposition of a third-order tensor
    • 2009
    • Dimitri Nion and Nicholas D. Sidiropoulos. 2009. Adaptive algorithms to track the PARAFAC decomposition of a third-order tensor. IEEE Transactions on Signal Processing, 57, 6 (2009), 2299-2310. DOI:http://dx.doi.org/10.1109/tsp.2009.2016885.
    • (2009) IEEE Transactions on Signal Processing , vol.57 , Issue.6 , pp. 2299-2310
    • Nion, D.1    Sidiropoulos, N.D.2
  • 103
    • 80053896203 scopus 로고    scopus 로고
    • Tensor-Train decomposition
    • 2011
    • Ivan V. Oseledets. 2011. Tensor-Train decomposition. SIAM Journal on Scientific Computing 33, 5 (2011), 2295-2317. DOI:http://dx.doi.org/10.1137/090752286.
    • (2011) SIAM Journal on Scientific Computing , vol.33 , Issue.5 , pp. 2295-2317
    • Oseledets, I.V.1
  • 104
    • 0030775193 scopus 로고    scopus 로고
    • Aweighted non-negative least squares algorithm for three-way "parafac" factor analysis
    • Oct. 1997
    • Pentti Paatero. 1997. Aweighted non-negative least squares algorithm for three-way "PARAFAC" factor analysis. Chemometrics and Intelligent Laboratory Systems 38, 2 (Oct. 1997), 223-242. DOI:http://dx.doi.org/10.1016/S0169-7439(97)00031-2.
    • (1997) Chemometrics and Intelligent Laboratory Systems , vol.38 , Issue.2 , pp. 223-242
    • Paatero, P.1
  • 110
    • 84872112858 scopus 로고    scopus 로고
    • From k-means to higher-way co-clustering: Multilinear decomposition with sparse latent factors
    • 2013
    • Evangelos E. Papalexakis, Nicholas D. Sidiropoulos, and Rasmus Bro. 2013. From k-means to higher-way co-clustering: Multilinear decomposition with sparse latent factors. IEEE Transactions on Signal Processing, 61, 2 (2013), 493-506. DOI:http://dx.doi.org/10.1109/tsp.2012.2225052.
    • (2013) IEEE Transactions on Signal Processing , vol.61 , Issue.2 , pp. 493-506
    • Papalexakis, E.E.1    Sidiropoulos, N.D.2    Bro, R.3
  • 114
    • 84875661105 scopus 로고    scopus 로고
    • Low complexity damped gauss-Newton algorithms for candecomp/parafac
    • Jan. 2013
    • Anh-Huy Phan, Petr Tichavsḱy, and Andrzej Cichocki. 2013. Low complexity damped Gauss-Newton algorithms for CANDECOMP/PARAFAC. SIAM Journal on Matrix Analysis & Applications 34, 1 (Jan. 2013), 126-147. DOI:http://dx.doi.org/10.1137/100808034.
    • (2013) SIAM Journal on Matrix Analysis & Applications , vol.34 , Issue.1 , pp. 126-147
    • Phan, A.-H.1    Tichavsḱy, P.2    Cichocki, A.3
  • 120
    • 31844432834 scopus 로고    scopus 로고
    • Non-negative tensor factorization with applications to statistics and computer vision
    • Amnon Shashua and Tamir Hazan. 2005. Non-negative tensor factorization with applications to statistics and computer vision. In Proceedings of the 22nd International Conference on Machine Learning. ACM, 792-799. DOI:http://dx.doi.org/10.1145/1102351.1102451.
    • (2005) Proceedings of the 22nd International Conference on Machine Learning. ACM , pp. 792-799
    • Shashua, A.1    Hazan, T.2
  • 121
    • 84936929171 scopus 로고    scopus 로고
    • Distributed methods for high-dimensional and large-scale tensor factorization
    • Kijung Shin and U. Kang. 2014. Distributed methods for high-dimensional and large-scale tensor factorization. In 2014 IEEE International Conference on Data Mining (ICDM'14). IEEE, 989-994. DOI:http://dx.doi.org/10.1109/icdm.2014.78.
    • (2014) 2014 IEEE International Conference on Data Mining (ICDM'14). IEEE , pp. 989-994
    • Shin, K.1    Kang, U.2
  • 122
    • 85032751899 scopus 로고    scopus 로고
    • Parallel randomly compressed cubes: A scalable distributed architecture for big tensor decomposition
    • 2014
    • Nicholas Sidiropoulos, Evangelos Papalexakis, and Christos Faloutsos. 2014. Parallel randomly compressed cubes: A scalable distributed architecture for big tensor decomposition. IEEE Signal Processing Magazine 31, 5 (2014), 57-70. DOI:http://dx.doi.org/10.1109/msp.2014.2329196.
    • (2014) IEEE Signal Processing Magazine , vol.31 , Issue.5 , pp. 57-70
    • Sidiropoulos, N.1    Papalexakis, E.2    Faloutsos, C.3
  • 123
    • 0033653594 scopus 로고    scopus 로고
    • On the uniqueness of multilinear decomposition of n-way arrays
    • 2000
    • Nicholas D. Sidiropoulos and Rasmus Bro. 2000. On the uniqueness of multilinear decomposition of N-way arrays. Journal of Chemometrics 14, 3 (2000), 229-239. DOI:http://dx.doi.org/10.1002/1099-128X(200005/06)14:3-229::AID-CEM587-3.0.CO;2-N.
    • (2000) Journal of Chemometrics , vol.14 , Issue.3 , pp. 229-239
    • Sidiropoulos, N.D.1    Bro, R.2
  • 124
    • 84866665200 scopus 로고    scopus 로고
    • Multi-way compressed sensing for sparse low-rank tensors
    • 2012
    • Nicholas D. Sidiropoulos and Anastasios Kyrillidis. 2012. Multi-way compressed sensing for sparse low-rank tensors. IEEE Signal Processing Letters 19, 11 (2012), 757-760. DOI:http://dx.doi.org/10.1109/lsp.2012.2210872.
    • (2012) IEEE Signal Processing Letters , vol.19 , Issue.11 , pp. 757-760
    • Sidiropoulos, N.D.1    Kyrillidis, A.2
  • 126
    • 0033653327 scopus 로고    scopus 로고
    • Multiway multiblock component and covariates regression models
    • 2000
    • Age K. Smilde, Johan A. Westerhuis, and Ricard Boqúe. 2000. Multiway multiblock component and covariates regression models. Journal of Chemometrics 14, 3 (2000), 301-331. DOI:http://dx.doi.org/10.1002/1099-128x(200005/06)14:3-301::aid-cem594-3.0.co;2-h.
    • (2000) Journal of Chemometrics , vol.14 , Issue.3 , pp. 301-331
    • Smilde, A.K.1    Westerhuis, J.A.2    Boqúe, R.3
  • 128
    • 33746359652 scopus 로고    scopus 로고
    • Sufficient conditions for uniqueness in candecomp/parafac and indscal with random component matrices
    • 2006
    • A. Stegeman, J. M. F. ten Berge, and L. De Lathauwer. 2006. Sufficient conditions for uniqueness in CANDECOMP/PARAFAC and INDSCAL with random component matrices. Psychometrika 71, 2 (2006), 219-229. DOI:http://dx.doi.org/10.1007/s11336-006-1278-2.
    • (2006) Psychometrika , vol.71 , Issue.2 , pp. 219-229
    • Stegeman, A.1    Berge, J.M.F.T.2    Lathauwer, L.D.3
  • 131
    • 48349087469 scopus 로고    scopus 로고
    • Two heads better than one: Pattern discovery in time-evolving multi-Aspect data
    • 2008
    • Jimeng Sun, Charalampos E. Tsourakakis, Evan Hoke, Christos Faloutsos, and Tina Eliassi-Rad. 2008. Two heads better than one: Pattern discovery in time-evolving multi-Aspect data. Data Mining and Knowledge Discovery 17, 1 (2008), 111-128. DOI:http://dx.doi.org/10.1007/978-3-540-87479-919.
    • (2008) Data Mining and Knowledge Discovery , vol.17 , Issue.1 , pp. 111-128
    • Sun, J.1    Tsourakakis, C.E.2    Hoke, E.3    Faloutsos, C.4    Eliassi-Rad, T.5
  • 135
    • 0036746455 scopus 로고    scopus 로고
    • On uniqueness in candecomp/parafac
    • 2002
    • Jos M. F. ten Berge and Nikolaos D. Sidiropoulos. 2002. On uniqueness in CANDECOMP/PARAFAC. Psychometrika 67, 3 (2002), 399-409. DOI:http://dx.doi.org/10.1007/bf02294992.
    • (2002) Psychometrika , vol.67 , Issue.3 , pp. 399-409
    • Berge, J.M.F.T.1    Sidiropoulos, N.D.2
  • 136
    • 0034183641 scopus 로고    scopus 로고
    • Three-mode principal components analysis: Choosing the numbers of components and sensitivity to local optima
    • 2000
    • Marieke E. Timmerman and Henk A. L. Kiers. 2000. Three-mode principal components analysis: Choosing the numbers of components and sensitivity to local optima. British Journal of Mathematical and Statistical Psychology 53, 1 (2000), 1-16. DOI:http://dx.doi.org/10.1348/000711000159132.
    • (2000) British Journal of Mathematical and Statistical Psychology , vol.53 , Issue.1 , pp. 1-16
    • Timmerman, M.E.1    Kiers, H.A.L.2
  • 137
    • 12844274547 scopus 로고    scopus 로고
    • Parafac and missing values
    • 2005
    • Giorgio Tomasi and Rasmus Bro. 2005. PARAFAC and missing values. Chemometrics and Intelligent Laboratory Systems 75, 2 (2005), 163-180. DOI:http://dx.doi.org/10.1016/j.chemolab.2004.07.003.
    • (2005) Chemometrics and Intelligent Laboratory Systems , vol.75 , Issue.2 , pp. 163-180
    • Tomasi, G.1    Bro, R.2
  • 138
    • 30144444694 scopus 로고    scopus 로고
    • A comparison of algorithms for fitting the parafac model
    • 2006
    • Giorgio Tomasi and Rasmus Bro. 2006. A comparison of algorithms for fitting the PARAFAC model. Computational Statistics & Data Analysis 50, 7 (2006), 1700-1734. DOI:http://dx.doi.org/10.1016/j.csda.2004.11.013.
    • (2006) Computational Statistics & Data Analysis , vol.50 , Issue.7 , pp. 1700-1734
    • Tomasi, G.1    Bro, R.2
  • 140
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • 1966
    • L. R. Tucker. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31, 3 (1966), 279-311. DOI:http://dx.doi.org/10.1007/bf02289464.
    • (1966) Psychometrika , vol.31 , Issue.3 , pp. 279-311
    • Tucker, L.R.1
  • 141
    • 84944415516 scopus 로고    scopus 로고
    • Multilinear analysis of image ensembles: Tensorfaces
    • 2002
    • Alex M. Vasilescu and Demetri Terzopoulos. 2002. Multilinear analysis of image ensembles: Tensorfaces. Computer Vision ECCV 2002 (2002), 447-460. DOI:http://dx.doi.org/10.1007/3-540-47969-430.
    • (2002) Computer Vision ECCV , vol.2002 , pp. 447-460
    • Vasilescu, A.M.1    Terzopoulos, D.2
  • 143
    • 58549117848 scopus 로고    scopus 로고
    • Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes
    • 2009
    • Tom Wilderjans, Eva Ceulemans, and Iven Van Mechelen. 2009. Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes. Computational Statistics & Data Analysis 53, 4 (2009), 1086-1098. DOI:http://dx.doi.org/10.1016/j.csda.2008.09.031.
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.4 , pp. 1086-1098
    • Wilderjans, T.1    Ceulemans, E.2    Mechelen, I.V.3
  • 144
  • 145
    • 84869048536 scopus 로고    scopus 로고
    • Linked parafac/cp tensor decomposition and its fast implementation for multi-block tensor analysis
    • Tatsuya Yokota, Andrzej Cichocki, and Yukihiko Yamashita. 2012. Linked PARAFAC/CP tensor decomposition and its fast implementation for multi-block tensor analysis. In Neural Information Processing. Springer, 84-91. DOI:http://dx.doi.org/10.1007/978-3-642-34487-911.
    • (2012) Neural Information Processing. Springer , pp. 84-91
    • Yokota, T.1    Cichocki, A.2    Yamashita, Y.3
  • 147
    • 84939249854 scopus 로고    scopus 로고
    • Bayesian cp factorization of incomplete tensors with automatic rank determination
    • 2015
    • Q. Zhao, L. Zhang, and A. Cichocki. 2015. Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37 (2015), 1751- 1763. DOI:http://dx.doi.org/10.1109/tpami.2015.2392756.
    • (2015) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.37 , pp. 1751-1763
    • Zhao, Q.1    Zhang, L.2    Cichocki, A.3
  • 149
    • 84862792169 scopus 로고    scopus 로고
    • Towards mobile intelligence: Learning from GPS history data for collaborative recommendation
    • 2012
    • Vincent W. Zheng, Yu Zheng, Xing Xie, and Qiang Yang. 2012. Towards mobile intelligence: Learning from GPS history data for collaborative recommendation. Artificial Intelligence 184 (2012), 17-37. DOI:http://dx.doi.org/10.1016/j.artint.2012.02.002.
    • (2012) Artificial Intelligence , vol.184 , pp. 17-37
    • Vincent, W.1    Zheng2    Zheng, Y.3    Xie, X.4    Yang, Q.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.