메뉴 건너뛰기




Volumn 61, Issue 2, 2013, Pages 493-506

From K-means to higher-way co-clustering: Multilinear decomposition with sparse latent factors

Author keywords

Co clustering; compressed sensing; factor analysis; k means; multi way analysis; sparsity; tensor decomposition; triclustering; unsupervised clustering

Indexed keywords

CO-CLUSTERING; COMPRESSIVE SENSING; K-MEANS; MULTI-WAY ANALYSIS; SPARSITY; TENSOR DECOMPOSITION; TRICLUSTERING; UNSUPERVISED CLUSTERING;

EID: 84872112858     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2012.2225052     Document Type: Article
Times cited : (131)

References (38)
  • 1
    • 57349141917 scopus 로고    scopus 로고
    • Approximation algorithms for co-clustering
    • BC, Canada Jun. 9-12
    • A. Anagnostopoulos, A. Dasgupta, and R. Kumar, "Approximation algorithms for co-clustering," presented at the PODS, Vancouver, BC, Canada, Jun. 9-12, 2008.
    • (2008) PODS Vancouver
    • Anagnostopoulos, A.1    Dasgupta, A.2    Kumar, R.3
  • 2
    • 0034648432 scopus 로고    scopus 로고
    • Chemometrics Intell. Lab. Syst [Online]. Available
    • C. A. Andersson and R. Bro, "The-way toolbox for MATLAB," Chemometrics Intell. Lab. Syst., 2000 [Online]. Available: http://www. models.kvl.dk/nwaytoolbox
    • (2000) The-way Toolbox for MATLAB
    • Andersson, C.A.1    Bro, R.2
  • 4
    • 53649089323 scopus 로고    scopus 로고
    • Classification of GC-MS measurements of wines by combining data dimension reduction and variable selection techniques
    • D. Ballabio, T. Skov, R. Leardi, and R. Bro, "Classification of GC-MS measurements of wines by combining data dimension reduction and variable selection techniques," J. Chemometrics, vol. 22, no. 8, pp. 457-463, 2008.
    • (2008) J. Chemometrics , vol.22 , Issue.8 , pp. 457-463
    • Ballabio, D.1    Skov, T.2    Leardi, R.3    Bro, R.4
  • 5
    • 34548691246 scopus 로고    scopus 로고
    • A generalized maximum entropy approach to Bregman Co-clustering and matrix approximation
    • A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha, "A generalized maximum entropy approach to Bregman co-clustering and matrix approximation," J. Mach. Learn. Res., vol. 8, pp. 1919-1986, Aug. 2007. (Pubitemid 47416225)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1919-1986
    • Banerjee, A.1    Dhillon, I.2    Ghosh, J.3    Merugu, S.4    Modha, D.S.5
  • 6
    • 84862756829 scopus 로고    scopus 로고
    • Co-clustering-A useful tool for Chemometrics
    • Jun.
    • R. Bro, E. E. Papalexakis, E. Acar, and N. D. Sidiropoulos, "Co-clustering-A useful tool for Chemometrics," J. Chemometrics, vol. 26, no. 6, pp. 256-263, Jun. 2012.
    • (2012) J. Chemometrics , vol.26 , Issue.6 , pp. 256-263
    • Bro, R.1    Papalexakis, E.E.2    Acar, E.3    Sidiropoulos, N.D.4
  • 10
    • 0035789644 scopus 로고    scopus 로고
    • Co-clustering documents and words using bipartite spectral graph partitioning
    • I. S. Dhillon, "Co-clustering documents and words using bipartite spectral graph partitioning," in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 2001, pp. 269-274.
    • (2001) Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data Min , pp. 269-274
    • Dhillon, I.S.1
  • 11
    • 31044433193 scopus 로고    scopus 로고
    • Communication networks from the Enron email corpus "It's always about the people. Enron is no different"
    • DOI 10.1007/s10588-005-5377-0
    • J. Diesner, T. L. Frantz, and K. M. Carley, "Communication networks from the Enron email corpus: It's always about the people. Enron is no different," Comput. Math. Organizat. Theory, vol. 3, no. 3, pp. 201-228, 2005. (Pubitemid 43118967)
    • (2005) Computational and Mathematical Organization Theory , vol.11 , Issue.3 , pp. 201-228
    • Diesner, J.1    Frantz, T.L.2    Carley, K.M.3
  • 12
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: The bridge versus the Lasso
    • W. J. Fu, "Penalized regressions: The bridge versus the Lasso," J. Computat. Graph. Statist., vol. 7, no. 3, pp. 397-416, 1998.
    • (1998) J. Computat. Graph. Statist , vol.7 , Issue.3 , pp. 397-416
    • Fu, W.J.1
  • 13
    • 0002740437 scopus 로고
    • Foundations of the PARAFAC procedure: Models and conditions for an explanatory" multimodal factor analysis,"
    • R. A. Harshman, "Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multimodal factor analysis," UCLA Working Papers in Phonet., vol. 16, pp. 1-84, 1970.
    • (1970) UCLA Working Papers in Phonet , vol.16 , pp. 1-84
    • Harshman, R.A.1
  • 14
    • 84927511887 scopus 로고
    • Direct clustering of a data matrix
    • J. A. Hartigan, "Direct clustering of a data matrix," J. Amer. Statist. Assoc., vol. 67, pp. 123-129, 1972.
    • (1972) J. Amer. Statist. Assoc , vol.67 , pp. 123-129
    • Hartigan, J.A.1
  • 15
    • 0002108743 scopus 로고
    • Convergent computation by iterative majorization: Theory and applications in multidimensional data analysis
    • New York: Oxford Univ. Press [Online]. Available
    • W. J. Heiser, "Convergent computation by iterative majorization: Theory and applications in multidimensional data analysis," in Recent Advances in Descriptive Multivariate Analysis. New York: Oxford Univ. Press, 1994, pp. 157-189 [Online]. Available: http://www.oup.com/us/catalog/general/ subject/Mathematics/ComputationalMathematics/? view=usa&ci=9780198522850
    • (1994) Recent Advances in Descriptive Multivariate Analysis , pp. 157-189
    • Heiser, W.J.1
  • 16
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative Matrix factorization with sparseness constraints
    • P. O. Hoyer, "Non-negative Matrix factorization with sparseness constraints," J. Mach. Learn. Res., vol. 5, pp. 1457-1469, 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 17
    • 65149091304 scopus 로고    scopus 로고
    • Simultaneous tensor subspace selection and clustering: The equivalence of high order SVD and k-means clustering
    • H. Huang, C. Ding, D. Luo, and T. Li, "Simultaneous tensor subspace selection and clustering: The equivalence of high order SVD and k-means clustering," in Proc. 14th ACMSIGKDD, 2008, pp. 327-335.
    • (2008) Proc. 14th ACMSIGKDD , pp. 327-335
    • Huang, H.1    Ding, C.2    Luo, D.3    Li, T.4
  • 18
    • 0037399130 scopus 로고    scopus 로고
    • Spectral biclustering of microarray data: Coclustering genes and conditions
    • DOI 10.1101/gr.648603
    • Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein, "Spectral biclustering ofmicroarray data: Coclustering genes and conditions," Genome Res., vol. 13, pp. 703-716, 2003. (Pubitemid 36511928)
    • (2003) Genome Research , vol.13 , Issue.4 , pp. 703-716
    • Kluger, Y.1    Basri, R.2    Chang, J.T.3    Gerstein, M.4
  • 19
    • 48749101457 scopus 로고
    • Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
    • J. B. Kruskal, "Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics," Linear Algebra Appl., vol. 18, no. 2, pp. 95-138, 1977.
    • (1977) Linear Algebra Appl , vol.18 , Issue.2 , pp. 95-138
    • Kruskal, J.B.1
  • 20
    • 78650059908 scopus 로고    scopus 로고
    • Biclustering via sparse singular value decomposition
    • Dec.
    • M. Lee, H. Shen, J. Z. Huang, and J. S. Marron, "Biclustering via sparse singular value decomposition," Biometrics, vol. 66, no. 4, pp. 1087-1095, Dec. 2010.
    • (2010) Biometrics , vol.66 , Issue.4 , pp. 1087-1095
    • Lee, M.1    Shen, H.2    Huang, J.Z.3    Marron, J.S.4
  • 21
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. Lee and H. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 23
    • 3142768191 scopus 로고    scopus 로고
    • Biclustering algorithms for biological data analysis: A survey
    • Jan Mar
    • S. C. Madeira and A. L. Oliveira, "Biclustering algorithms for biological data analysis: A survey," IEEE/ACM Trans. Computat. Biol. Bioinf., vol. 1, no. 1, pp. 24-45, Jan.-Mar. 2004.
    • (2004) IEEE/ACM Trans. Computat. Biol. Bioinf , vol.1 , Issue.1 , pp. 24-45
    • Madeira, S.C.1    Oliveira, A.L.2
  • 27
    • 49549105778 scopus 로고    scopus 로고
    • The bayesian lasso
    • T. Park andG. Casella, "The Bayesian Lasso," J. Amer. Statist. Assoc., vol. 103, no. 482, pp. 681-686, 2008.
    • (2008) J. Amer. Statist. Assoc , vol.103 , Issue.482 , pp. 681-686
    • Park, T.1    Casella, G.2
  • 28
    • 84856693407 scopus 로고    scopus 로고
    • Temporal relation co-clustering on directional social network and author-topic evolution
    • Mar
    • W. Peng and T. Li, "Temporal relation co-clustering on directional social network and author-topic evolution," Knowl. Inf. Syst., pp. 1-20, Mar. 2010.
    • (2010) Knowl. Inf. Syst , pp. 1-20
    • Peng, W.1    Li, T.2
  • 29
    • 66849099206 scopus 로고    scopus 로고
    • Enhanced line search: A novel method to accelerate PARAFAC
    • M. Rajih, P. Comon, and R. A. Harshman, "Enhanced line search: A novel method to accelerate PARAFAC," SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp. 1148-1171, 2008.
    • (2008) SIAM J. Matrix Anal. Appl , vol.30 , Issue.3 , pp. 1148-1171
    • Rajih, M.1    Comon, P.2    Harshman, R.A.3
  • 30
    • 77951115801 scopus 로고    scopus 로고
    • Exploiting covariance-domain sparsity for dimensionality reduction
    • Aruba, Dutch Antilles, Dec. 13-16
    • I. Schizas, G. B. Giannakis, and N. D. Sidiropoulos, "Exploiting covariance-domain sparsity for dimensionality reduction," in Proc. IEEE CAMSAP, Aruba, Dutch Antilles, Dec. 13-16, 2009.
    • (2009) Proc IEEE CAMSAP
    • Schizas, I.1    Giannakis, G.B.2    Sidiropoulos, N.D.3
  • 31
    • 4344616103 scopus 로고    scopus 로고
    • Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints
    • Sep
    • T. Jiang and N. D. Sidiropoulos, "Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints," IEEE Trans. Signal Process., vol. 52, no. 9, pp. 2625-2636, Sep. 2004.
    • (2004) IEEE Trans. Signal Process , vol.52 , Issue.9 , pp. 2625-2636
    • Jiang, T.1    Sidiropoulos, N.D.2
  • 32
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani, "Regression shrinkage and selection via the Lasso," J. Roy. Statist. Soc. Ser. B (Methodol.), vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Roy. Statist. Soc. Ser. B (Methodol.) , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 33
    • 30144444694 scopus 로고    scopus 로고
    • A comparison of algorithms for fitting the PARAFAC model
    • DOI 10.1016/j.csda.2004.11.013, PII S0167947304003895
    • G. Tomasi and R. Bro, "A comparison of algorithms for fitting the PARAFAC model," Comput. Statist. Data Anal., vol. 50, no. 7, pp. 1700-1734, 2006. (Pubitemid 43052351)
    • (2006) Computational Statistics and Data Analysis , vol.50 , Issue.7 , pp. 1700-1734
    • Tomasi, G.1    Bro, R.2
  • 34
    • 12844274547 scopus 로고    scopus 로고
    • PARAFAC and missing values
    • DOI 10.1016/j.chemolab.2004.07.003, PII S0169743904001741
    • G. Tomasi and R. Bro, "PARAFAC and missing values," Chemometrics Intell. Lab. Syst., vol. 75, no. 2, pp. 163-180, 2005. (Pubitemid 40164340)
    • (2005) Chemometrics and Intelligent Laboratory Systems , vol.75 , Issue.2 , pp. 163-180
    • Tomasi, G.1    Bro, R.2
  • 35
    • 70149096300 scopus 로고    scopus 로고
    • A penalizedmatrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • D. M.Witten, R. Tibshirani, and T. Hastie, "A penalizedmatrix decomposition, with applications to sparse principal components and canonical correlation analysis," Biostatist., vol. 10, no. 3, pp. 515-534, 2009.
    • (2009) Biostatist , vol.10 , Issue.3 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 36
    • 29844442223 scopus 로고    scopus 로고
    • Tricluster: An effective algorithm for mining coherent clusters in 3D microarray data
    • L. Zhao and M. J. Zaki, "Tricluster: An effective algorithm for mining coherent clusters in 3D microarray data," in Proc. ACM SIGMOD 2005, p. 705.
    • (2005) Proc ACM SIGMOD , pp. 705
    • Zhao, L.1    Zaki, M.J.2
  • 38
    • 34548536008 scopus 로고    scopus 로고
    • On the degrees of freedom of the Lasso
    • H. Zou, T. Hastie, and R. Tibshirani, "On the degrees of freedom of the Lasso," Ann. Statist., vol. 35, no. 5, pp. 2173-2192, 2007.
    • (2007) Ann. Statist , vol.35 , Issue.5 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.