-
1
-
-
68649096448
-
Tensor decompositions, and applications
-
T. Kolda, and B. Bader. "Tensor decompositions, and applications". SIAM Rev., vol. 51, no. 3, pp. 455-500, 2009
-
(2009)
SIAM Rev
, vol.51
, Issue.3
, pp. 455-500
-
-
Kolda, T.1
Bader, B.2
-
2
-
-
84891283756
-
-
New York NY USA Wiley
-
A. Cichocki, R. Zdunek, A. H. Phan, and S. I. Amari, Nonnegative Matrix, and Tensor Factorizations. New York, NY, USA: Wiley, 2009
-
(2009)
Nonnegative Matrix and Tensor Factorizations
-
-
Cichocki, A.1
Zdunek, R.2
Phan, A.H.3
Amari, S.I.4
-
3
-
-
67649880294
-
Semi-supervised bilinear subspace learning
-
Jul
-
D. Xu, and S. Yan. "Semi-supervised bilinear subspace learning". IEEE Trans. Image Process., vol. 18, no. 7, pp. 1671-1676, Jul. 2009
-
(2009)
IEEE Trans. Image Process
, vol.18
, Issue.7
, pp. 1671-1676
-
-
Xu, D.1
Yan, S.2
-
4
-
-
55149087688
-
Reconstruction, and recognition of tensor-based objects with concurrent subspaces analysis
-
Jan
-
D. Xu, S. Yan, L. Zhang, S. Lin, H.-J. Zhang, and T. S. Huang. "Reconstruction, and recognition of tensor-based objects with concurrent subspaces analysis". IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 1, pp. 36-47, Jan. 2008
-
(2008)
IEEE Trans. Circuits Syst. Video Technol
, vol.18
, Issue.1
, pp. 36-47
-
-
Xu, D.1
Yan, S.2
Zhang, L.3
Lin, S.4
Zhang, H.-J.5
Huang, T.S.6
-
5
-
-
69549135109
-
Enhancing bilinear subspace learning by element rearrangement
-
Oct
-
D. Xu, S. Yan, S. Lin, T. S. Huang, and S.-F. Chang. "Enhancing bilinear subspace learning by element rearrangement". IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 10, pp. 1913-1920, Oct. 2009
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.31
, Issue.10
, pp. 1913-1920
-
-
Xu, D.1
Yan, S.2
Lin, S.3
Huang, T.S.4
Chang, S.-F.5
-
6
-
-
0013953617
-
Some mathematical notes on three-mode factor analysis
-
L. R. Tucker. "Some mathematical notes on three-mode factor analysis". Psychometrika, vol. 31, no. 3, pp. 279-311, 1966
-
(1966)
Psychometrika
, vol.31
, Issue.3
, pp. 279-311
-
-
Tucker, L.R.1
-
7
-
-
0002740437
-
Foundations of the parafac procedure: Models, and conditions for an explanatory multimodal factor analysis
-
R. A. Harshman. "Foundations of the PARAFAC procedure: Models, and conditions for an "explanatory" multimodal factor analysis". UCLA Working Papers Phonetics, vol. 16, pp. 1-84, 1970
-
(1970)
UCLA Working Papers Phonetics
, vol.16
, pp. 1-84
-
-
Harshman, R.A.1
-
8
-
-
0030813663
-
Parafac tutorial, and applications
-
R. Bro. "PARAFAC. Tutorial, and applications". Chemom. Intell. Lab. Syst., vol. 38, no. 2, pp. 149-171, 1997
-
(1997)
Chemom. Intell. Lab. Syst
, vol.38
, Issue.2
, pp. 149-171
-
-
Bro, R.1
-
9
-
-
84871530732
-
Canonical polyadic decomposition with orthogonality constraints
-
M. Sørensen, L. De Lathauwer, P. Comon, S. Icart, and L. Deneire. "Canonical polyadic decomposition with orthogonality constraints". SIAM J. Matrix Anal. Appl., vol. 33, pp. 1190-1213, 2012
-
SIAM J. Matrix Anal. Appl
, vol.33
, Issue.2012
, pp. 1190-1213
-
-
Sørensen, M.1
De Lathauwer, L.2
Comon, P.3
Icart, S.4
Deneire, L.5
-
10
-
-
79952446596
-
Scalable tensor factorizations for incomplete data
-
E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup. "Scalable tensor factorizations for incomplete data". Chemom. Intell. Lab. Syst., vol. 106, no. 1, pp. 41-56, 2011
-
(2011)
Chemom. Intell. Lab. Syst
, vol.106
, Issue.1
, pp. 41-56
-
-
Acar, E.1
Dunlavy, D.M.2
Kolda, T.G.3
Mørup, M.4
-
11
-
-
84880828991
-
Optimizationbased algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-(lr, lr, 1) terms, and a new generalization
-
L. Sorber, M. Van Barel, and L. De Lathauwer. "Optimizationbased algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-(lr, lr, 1) terms, and a new generalization". SIAM J. Opt., vol. 23, no. 2, pp. 695-720, 2013
-
(2013)
SIAM J. Opt
, vol.23
, Issue.2
, pp. 695-720
-
-
Sorber, L.1
Van Barel, M.2
De Lathauwer, L.3
-
12
-
-
84902838492
-
Low-rank tensor completion by Riemannian optimization
-
Jun
-
D. Kressner, M. Steinlechner, and B. Vandereycken. "Low-rank tensor completion by Riemannian optimization". BIT Numer. Math., vol. 54, no. 2, pp. 447-468, Jun. 2014
-
(2014)
BIT Numer. Math
, vol.54
, Issue.2
, pp. 447-468
-
-
Kressner, D.1
Steinlechner, M.2
Vandereycken, B.3
-
13
-
-
84870175618
-
Tensor completion for estimating missing values in visual data
-
Jan
-
J. Liu, P. Musialski, P. Wonka, and J. Ye. "Tensor completion for estimating missing values in visual data". IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 208-220, Jan. 2013
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.1
, pp. 208-220
-
-
Liu, J.1
Musialski, P.2
Wonka, P.3
Ye, J.4
-
14
-
-
84894640150
-
Learning with tensors: A framework based on convex optimization, and spectral regularization
-
M. Signoretto, Q. T. Dinh, L. De Lathauwer, and J. A. Suykens. "Learning with tensors: A framework based on convex optimization, and spectral regularization". Mach. Learn., pp. 1-49, 2013
-
Mach. Learn
, vol.2013
, pp. 1-49
-
-
Signoretto, M.1
Dinh, Q.T.2
De Lathauwer, L.3
Suykens, J.A.4
-
15
-
-
80055061162
-
Composite splitting algorithms for convex optimization
-
J. Huang, S. Zhang, H. Li, and D. Metaxas. "Composite splitting algorithms for convex optimization". Comput. Vis. Image Understanding, vol. 115, no. 12, pp. 1610-1622, 2011
-
(2011)
Comput. Vis. Image Understanding
, vol.115
, Issue.12
, pp. 1610-1622
-
-
Huang, J.1
Zhang, S.2
Li, H.3
Metaxas, D.4
-
16
-
-
79551661156
-
Tensor completion, and lown-rank tensor recovery via convex optimization
-
S. Gandy, B. Recht, and I. Yamada. "Tensor completion, and lown-rank tensor recovery via convex optimization". Inverse Probl., vol. 27, no. 2, p. 025010, 2011
-
(2011)
Inverse Probl
, vol.27
, Issue.2
, pp. 025010
-
-
Gandy, S.1
Recht, B.2
Yamada, I.3
-
17
-
-
84894556521
-
Tensor completion via a multi-linear low-n-rank factorization model
-
H. Tan, B. Cheng, W. Wang, Y.-J. Zhang, and B. Ran. "Tensor completion via a multi-linear low-n-rank factorization model". Neurocomputing, vol. 133, pp. 161-169, 2014
-
Neurocomputing
, vol.133
, Issue.2014
, pp. 161-169
-
-
Tan, H.1
Cheng, B.2
Wang, W.3
Zhang, Y.-J.4
Ran, B.5
-
18
-
-
84896845961
-
Large margin low rank tensor analysis
-
G. Zhong, and M. Cheriet. "Large margin low rank tensor analysis". Neural Comput., vol. 26, no. 4, pp. 761-780, 2014
-
(2014)
Neural Comput
, vol.26
, Issue.4
, pp. 761-780
-
-
Zhong, G.1
Cheriet, M.2
-
20
-
-
84894544955
-
Simultaneous tensor decomposition, and completion using factor priors
-
Mar
-
Y.-L. Chen, C.-T. Hsu, and H.-Y. Liao. "Simultaneous tensor decomposition, and completion using factor priors". IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 3, pp. 577-591, Mar. 2014
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.36
, Issue.3
, pp. 577-591
-
-
Chen, Y.-L.1
Hsu, C.-T.2
Liao, H.-Y.3
-
21
-
-
84864537879
-
Tensor factorization using auxiliary information
-
A. Narita, K. Hayashi, R. Tomioka, and H. Kashima. "Tensor factorization using auxiliary information". Data Min. Knowl. Discov., vol. 25, no. 2, pp. 298-324, 2012
-
(2012)
Data Min. Knowl. Discov
, vol.25
, Issue.2
, pp. 298-324
-
-
Narita, A.1
Hayashi, K.2
Tomioka, R.3
Kashima, H.4
-
22
-
-
0001424792
-
Tensor rank is NP-complete
-
J. Ha stad. "Tensor rank is NP-complete". J. Algorithms, vol. 11, no. 4, pp. 644-654, 1990
-
(1990)
J. Algorithms
, vol.11
, Issue.4
, pp. 644-654
-
-
-
23
-
-
80052020070
-
Tensor rank: Some lower, and upper bounds
-
B. Alexeev, M. A. Forbes, and J. Tsimerman. "Tensor rank: Some lower, and upper bounds". in Proc. IEEE 26th Annu. Conf. Comput. Complexity, 2011, pp. 283-291
-
(2011)
Proc. IEEE 26th Annu. Conf. Comput. Complexity
, pp. 283-291
-
-
Alexeev, B.1
Forbes, M.A.2
Tsimerman, J.3
-
25
-
-
55349142218
-
Tensor rank, and the ill-posedness of the best low-rank approximation problem
-
V. De Silva, and L.-H. Lim. "Tensor rank, and the ill-posedness of the best low-rank approximation problem". SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp. 1084-1127, 2008
-
(2008)
SIAM J. Matrix Anal. Appl
, vol.30
, Issue.3
, pp. 1084-1127
-
-
De Silva, V.1
Lim, L.-H.2
-
26
-
-
84887356726
-
Tensor rank, invariants, inequalities, and applications
-
E. S. Allman, P. D. Jarvis, J. A. Rhodes, and J. G. Sumner. "Tensor rank, invariants, inequalities, and applications". SIAM J. Matrix Anal. Appl., vol. 34, no. 3, pp. 1014-1045, 2013
-
(2013)
SIAM J. Matrix Anal. Appl
, vol.34
, Issue.3
, pp. 1014-1045
-
-
Allman, E.S.1
Jarvis, P.D.2
Rhodes, J.A.3
Sumner, J.G.4
-
28
-
-
56449131205
-
Bayesian probabilistic matrix factorization using markov chain monte carlo
-
R. Salakhutdinov, and A. Mnih. "Bayesian probabilistic matrix factorization using Markov chain Monte Carlo". in Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 880-887
-
(2008)
Proc. 25th Int. Conf. Mach. Learn
, pp. 880-887
-
-
Salakhutdinov, R.1
Mnih, A.2
-
29
-
-
84863899797
-
Sparse Bayesian methods for low-rank matrix estimation
-
Aug
-
S. D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos. "Sparse Bayesian methods for low-rank matrix estimation". IEEE Trans. Signal Process., vol. 60, no. 8, pp. 3964-3977, Aug. 2012
-
(2012)
IEEE Trans. Signal Process
, vol.60
, Issue.8
, pp. 3964-3977
-
-
Babacan, S.D.1
Luessi, M.2
Molina, R.3
Katsaggelos, A.K.4
-
30
-
-
48249140327
-
Variational Bayesian approach to movie rating prediction
-
Y. J. Lim, and Y. W. Teh. "Variational Bayesian approach to movie rating prediction". in Proc. KDD Cup Workshop, 2007, pp. 15-21
-
(2007)
Proc. KDD Cup Workshop
, pp. 15-21
-
-
Lim, Y.J.1
Teh, Y.W.2
-
33
-
-
84862293016
-
Probabilistic models for incomplete multi-dimensional arrays
-
W. Chu, and Z. Ghahramani. "Probabilistic models for incomplete multi-dimensional arrays". in JMLR Workshop Conf. Proc., 2009, vol. 5, pp. 89-96
-
(2009)
JMLR Workshop Conf. Proc
, vol.5
, pp. 89-96
-
-
Chu, W.1
Ghahramani, Z.2
-
34
-
-
84867411640
-
Probabilistic latent tensor factorization model for link pattern prediction in multirelational networks
-
S. Gao, L. Denoyer, P. Gallinari, and J. GUO. "Probabilistic latent tensor factorization model for link pattern prediction in multirelational networks". J. China Univ. Posts Telecommun., vol. 19, pp. 172-181, 2012
-
(2012)
J. China Univ. Posts Telecommun
, vol.19
, pp. 172-181
-
-
Gao, S.1
Denoyer, L.2
Gallinari, P.3
Guo, J.4
-
35
-
-
80052121737
-
Temporal collaborative filtering with Bayesian probabilistic tensor factorization
-
L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell. "Temporal collaborative filtering with Bayesian probabilistic tensor factorization". in Proc. SIAM Data Min., 2010, vol. 2010
-
(2010)
Proc. SIAM Data Min
, vol.2010
-
-
Xiong, L.1
Chen, X.2
Huang, T.-K.3
Schneider, J.4
Carbonell, J.G.5
-
36
-
-
79951729471
-
Exponential family tensor factorization for missing-values prediction, and anomaly detection
-
K. Hayashi, T. Takenouchi, T. Shibata, Y. Kamiya, D. Kato, K. Kunieda, K. Yamada, and K. Ikeda. "Exponential family tensor factorization for missing-values prediction, and anomaly detection". in Proc. IEEE 10th Int. Conf. Data Min., 2010, pp. 216-225
-
(2010)
Proc. IEEE 10th Int. Conf. Data Min
, pp. 216-225
-
-
Hayashi, K.1
Takenouchi, T.2
Shibata, T.3
Kamiya, Y.4
Kato, D.5
Kunieda, K.6
Yamada, K.7
Ikeda, K.8
-
37
-
-
84867120756
-
Infinite Tucker decomposition: Nonparametric Bayesian models for multiway data analysis
-
Z. Xu, F. Yan, and A. Qi. "Infinite Tucker decomposition: Nonparametric Bayesian models for multiway data analysis". in Proc. 29th Int. Conf. Mach. Lear., 2012, pp. 1023-1030
-
(2012)
Proc. 29th Int. Conf. Mach. Lear
, pp. 1023-1030
-
-
Xu, Z.1
Yan, F.2
Qi, A.3
-
38
-
-
0000335983
-
Bayesian methods for backpropagation networks
-
New York, NY, USA Springer
-
D. J. MacKay. "Bayesian methods for backpropagation networks". in Models of Neural Networks III. New York, NY, USA: Springer, 1996, pp. 211-254
-
(1996)
Models of Neural Networks III
, pp. 211-254
-
-
MacKay, D.J.1
-
39
-
-
0001224048
-
Sparse bayesian learning, and the relevance vector machine
-
M. E. Tipping. "Sparse Bayesian learning, and the relevance vector machine". J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001
-
(2001)
J. Mach. Learn. Res
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
41
-
-
21844450606
-
Variational message passing
-
J. M. Winn, and C. M. Bishop. "Variational message passing". J. Mach. Learn. Res., vol. 6, pp. 661-694, 2005
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 661-694
-
-
Winn, J.M.1
Bishop, C.M.2
-
43
-
-
84890455806
-
Tensor completion through multiple kronecker product decomposition
-
A. H. Phan, A. Cichocki, P. Tichavsky, G. Luta, and A. J. Brockmeier. "Tensor completion through multiple Kronecker product decomposition." in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2013, pp. 3233-3237
-
(2013)
Proc. IEEE Int. Conf. Acoust., Speech Signal Process
, pp. 3233-3237
-
-
Phan, A.H.1
Cichocki, A.2
Tichavsky, P.3
Luta, G.4
Brockmeier, A.J.5
-
44
-
-
72349091918
-
A 3D face model for pose, and illumination invariant face recognition
-
P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. "A 3D face model for pose, and illumination invariant face recognition". in Proc. 6th IEEE Int. Conf. Adv. Video Signal Based Surveill., 2009, pp. 296-301
-
(2009)
Proc. 6th IEEE Int. Conf. Adv. Video Signal Based Surveill
, pp. 296-301
-
-
Paysan, P.1
Knothe, R.2
Amberg, B.3
Romdhani, S.4
Vetter, T.5
|