메뉴 건너뛰기




Volumn , Issue , 2014, Pages 115-124

Marble: High-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization

Author keywords

application; dimensionality reduction; EHR phenotyping; tensor

Indexed keywords


EID: 84907024756     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2623330.2623658     Document Type: Conference Paper
Times cited : (220)

References (24)
  • 2
    • 84874249177 scopus 로고    scopus 로고
    • Alternating Minimization as Sequential Unconstrained Minimization: A Survey
    • Mar.
    • C. L. Byrne. Alternating Minimization as Sequential Unconstrained Minimization: A Survey. Journal of Optimization Theory and Applications, 156(3):554-566, Mar. 2013.
    • (2013) Journal of Optimization Theory and Applications , vol.156 , Issue.3 , pp. 554-566
    • Byrne, C.L.1
  • 3
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition
    • J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika, 35(3):283-319, 1970.
    • (1970) Psychometrika , vol.35 , Issue.3 , pp. 283-319
    • Carroll, J.D.1    Chang, J.-J.2
  • 4
    • 84970895228 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention (CDC). Technical report, CDC, Feb.
    • Centers for Disease Control and Prevention (CDC). Chronic diseases at a glance 2009. Technical report, CDC, Feb. 2009.
    • (2009) Chronic Diseases at a Glance 2009
  • 5
    • 84888200992 scopus 로고    scopus 로고
    • Applying active learning to high-throughput phenotyping algorithms for electronic health records data
    • Dec.
    • Y. Chen, R. J. Carroll, E. R. M. Hinz, A. Shah, A. E. Eyler, J. C. Denny, and H. Xu. Applying active learning to high-throughput phenotyping algorithms for electronic health records data. JAMIA, 20(e2):e253-e259, Dec. 2013.
    • (2013) JAMIA , vol.20 , Issue.E2
    • Chen, Y.1    Carroll, R.J.2    Hinz, E.R.M.3    Shah, A.4    Eyler, A.E.5    Denny, J.C.6    Xu, H.7
  • 7
    • 37749039163 scopus 로고    scopus 로고
    • Novel multi-layer non-negative tensor factorization with sparsity constraints
    • Springer
    • A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S.-I. Amari. Novel multi-layer non-negative tensor factorization with sparsity constraints. In ICANNGA 2007, pages 271-280. Springer, 2007.
    • (2007) ICANNGA , vol.2007 , pp. 271-280
    • Cichocki, A.1    Zdunek, R.2    Choi, S.3    Plemmons, R.4    Amari, S.-I.5
  • 9
    • 85018832771 scopus 로고    scopus 로고
    • Network discovery via constrained tensor analysis of fMRI data
    • Aug.
    • I. Davidson, S. Gilpin, O. Carmichael, and P. Walker. Network discovery via constrained tensor analysis of fMRI data. In KDD 2013, Aug. 2013.
    • KDD , vol.2013 , pp. 2013
    • Davidson, I.1    Gilpin, S.2    Carmichael, O.3    Walker, P.4
  • 10
    • 84872022133 scopus 로고    scopus 로고
    • Mining electronic health records in the genomics era
    • Dec.
    • J. C. Denny. Mining electronic health records in the genomics era. PLoS Computational Biology, 8(12):e1002823-e1002823, Dec. 2012.
    • (2012) PLoS Computational Biology , vol.8 , Issue.12
    • Denny, J.C.1
  • 11
    • 84861111031 scopus 로고    scopus 로고
    • Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization
    • Apr.
    • N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization. Neural Computation, 24(4), Apr. 2012.
    • Neural Computation , vol.24 , Issue.4 , pp. 2012
    • Gillis, N.1    Glineur, F.2
  • 12
    • 84907026649 scopus 로고    scopus 로고
    • Newton-Based Optimization for Nonnegative Tensor Factorizations
    • Apr.
    • S. Hansen, T. Plantenga, and T. G. Kolda. Newton-Based Optimization for Nonnegative Tensor Factorizations. arXiv, Apr. 2013.
    • (2013) ArXiv
    • Hansen, S.1    Plantenga, T.2    Kolda, T.G.3
  • 13
    • 0002740437 scopus 로고
    • Foundations of the PARAFAC procedure: Models and conditions for an "explanatory"multimodal factor analysis
    • R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory"multimodal factor analysis. UCLA Working Papers in Phonetics, 16:1-84, 1970.
    • (1970) UCLA Working Papers in Phonetics , vol.16 , pp. 1-84
    • Harshman, R.A.1
  • 15
    • 84871854103 scopus 로고    scopus 로고
    • Next-generation phenotyping of electronic health records
    • Dec.
    • G. Hripcsak and D. J. Albers. Next-generation phenotyping of electronic health records. JAMIA, 20(1):117-121, Dec. 2012.
    • (2012) JAMIA , vol.20 , Issue.1 , pp. 117-121
    • Hripcsak, G.1    Albers, D.J.2
  • 16
    • 84866052446 scopus 로고    scopus 로고
    • Gigatensor: Scaling tensor analysis up by 100 times-algorithms and discoveries
    • U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: Scaling tensor analysis up by 100 times-algorithms and discoveries. In KDD 2012, pages 316-324, 2012.
    • (2012) KDD , vol.2012
    • Kang, U.1    Papalexakis, E.2    Harpale, A.3    Faloutsos, C.4
  • 17
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review , 51(3):455-500, 2009.
    • (2009) SIAM Review , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 18
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Oct.
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, Oct. 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 19
    • 36348966695 scopus 로고    scopus 로고
    • On the convergence of multiplicative update algorithms for nonnegative matrix factorization
    • Nov.
    • C.-J. Lin. On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Transactions on Neural Networks, 18(6):1589-1596, Nov. 2007.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.6 , pp. 1589-1596
    • Lin, C.-J.1
  • 21
    • 79960865296 scopus 로고    scopus 로고
    • Applications of tensor (multiway array) factorizations and decompositions in data mining
    • M. Mørup. Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1):24-40, 2011.
    • (2011) Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 24-40
    • Mørup, M.1
  • 23
    • 84863483091 scopus 로고    scopus 로고
    • Feature selection from high-order tensorial data via sparse decomposition
    • D. Wang and S. Kong. Feature selection from high-order tensorial data via sparse decomposition. Pattern Recognition Letters, 33(13):1695-1702, 2012.
    • (2012) Pattern Recognition Letters , vol.33 , Issue.13 , pp. 1695-1702
    • Wang, D.1    Kong, S.2
  • 24
    • 84867120756 scopus 로고    scopus 로고
    • Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis
    • Alan
    • Z. Xu, F. Yan, Yuan, and Qi. Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis. In ICML 2012, pages 1023-1030. Alan, 2012.
    • (2012) ICML , vol.2012 , pp. 1023-1030
    • Xu, Z.1    Yan, F.2    Yuan3    Qi4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.