메뉴 건너뛰기




Volumn 23, Issue 7-8, 2009, Pages 352-363

Automatic relevance determination for multi-way models

Author keywords

Automatic relevance determination; CandeComp PARAFAC; Model order estimation; Tucker

Indexed keywords

AUTOMATIC RELEVANCE DETERMINATION; BAYESIAN FRAMEWORKS; CANDECOMP; CANDECOMP/PARAFAC; MODEL ORDER ESTIMATION; MULTI-WAY MODELING; NUMBER OF COMPONENTS; PARAFAC; SIMPLE++; TUCK;

EID: 70349663945     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1223     Document Type: Article
Times cited : (123)

References (40)
  • 1
    • 0043074895 scopus 로고    scopus 로고
    • Three-mode models and individual differences in semantic differential data
    • Murakami T, Kroonenberg PM. Three-mode models and individual differences in semantic differential data. Multivariate Behav. Res. 2003; 38(2): 247-283.
    • (2003) Multivariate Behav. Res. , vol.38 , Issue.2 , pp. 247-283
    • Murakami, T.1    Kroonenberg, P.M.2
  • 2
    • 0028299242 scopus 로고
    • Rank annihilation factor analysis applied to flow injection analysis with photodiode-array detection
    • Nørgaard L, Ridder C. Rank annihilation factor analysis applied to flow injection analysis with photodiode-array detection. Chemom. Intell. Lab. Syst. 1994; 23(1): 107-114.
    • (1994) Chemom. Intell. Lab. Syst. , vol.23 , Issue.1 , pp. 107-114
    • Nørgaard, L.1    Ridder, C.2
  • 6
    • 36749028922 scopus 로고    scopus 로고
    • A tensor higher-order singular value decomposition for integrative analysis of dna microarray data from different studies
    • Omberg L, Golub GH, Alter O. A tensor higher-order singular value decomposition for integrative analysis of dna microarray data from different studies. Proc. Natl Acad. Sci. (PNAS) 2007; 104(47): 18371-18376.
    • (2007) Proc. Natl Acad. Sci. (PNAS) , vol.104 , Issue.47 , pp. 18371-18376
    • Omberg, L.1    Golub, G.H.2    Alter, O.3
  • 7
    • 31044456392 scopus 로고    scopus 로고
    • Parallel factor analysis as an exploratory tool for wavelet transformed event-related eeg
    • Mørup M, Hansen LK, Hermann CS, Parnas J, Arnfred SM. Parallel factor analysis as an exploratory tool for wavelet transformed event-related eeg. NeuroImage 2006; 29(3): 938-947.
    • (2006) NeuroImage , vol.29 , Issue.3 , pp. 938-947
    • Mørup, M.1    Hansen, L.K.2    Hermann, C.S.3    Parnas, J.4    Arnfred, S.M.5
  • 8
    • 2942597622 scopus 로고    scopus 로고
    • Structure-seeking multilinear methods for the analysis of fmri data
    • Andersen AH, Rayens WS. Structure-seeking multilinear methods for the analysis of fmri data. NeuroImage 2004; 22: 728-739.
    • (2004) NeuroImage , vol.22 , pp. 728-739
    • Andersen, A.H.1    Rayens, W.S.2
  • 10
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • Tucker LR. Some mathematical notes on three-mode factor analysis. Psychometrika 1966; 31: 279-311.
    • (1966) Psychometrika , vol.31 , pp. 279-311
    • Tucker, L.R.1
  • 11
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an N-way generalization of 'Eckart-Young' decomposition
    • Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via an N-way generalization of 'Eckart-Young' decomposition. Psychometrika 1970; 35: 283-319.
    • (1970) Psychometrika , vol.35 , pp. 283-319
    • Carroll, J.D.1    Chang, J.J.2
  • 12
    • 0002740437 scopus 로고
    • Foundations of the PARAFAC procedure: Models and conditions for an 'explanatory' multi-modal factor analysis
    • Harshman RA. Foundations of the PARAFAC procedure: models and conditions for an 'explanatory' multi-modal factor analysis. UCLA WPP 1970; 16: 1-84.
    • (1970) UCLA WPP , vol.16 , pp. 1-84
    • Harshman, R.A.1
  • 14
    • 0002258223 scopus 로고
    • Data preprocessing and the extended parafac model
    • Law HG, Snyder CW, Jr, Hattie JA, McDonald RP (eds). Praeger: New York
    • Harshman RA, Lundy ME. Data preprocessing and the extended parafac model. In Research Methods for Multimode Data Analysis, Law HG, Snyder CW, Jr, Hattie JA, McDonald RP (eds). Praeger: New York, 1984; 216-281.
    • (1984) Research Methods for Multimode Data Analysis , pp. 216-281
    • Harshman, R.A.1    Lundy, M.E.2
  • 15
    • 48749101457 scopus 로고
    • Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
    • Kruskal JB. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 1977; 18: 95-138.
    • (1977) Linear Algebra Appl , vol.18 , pp. 95-138
    • Kruskal, J.B.1
  • 16
    • 0032272113 scopus 로고    scopus 로고
    • Joint orthomax rotation of the core and component matrices resulting from three-mode principal component analysis
    • Kiers HAL. Joint orthomax rotation of the core and component matrices resulting from three-mode principal component analysis. J. Classif. 1998; 15: 245-263.
    • (1998) J. Classif. , vol.15 , pp. 245-263
    • Kiers, H.A.L.1
  • 17
    • 48249100881 scopus 로고    scopus 로고
    • Algorithms for sparse non-negative Tucker
    • Mørup M, Hansen LK, Arnfred SM. Algorithms for sparse non-negative Tucker. Neural Comput. 2008; 20(8): 2112-2131.
    • (2008) Neural Comput , vol.20 , Issue.8 , pp. 2112-2131
    • Mørup, M.1    Hansen, L.K.2    Arnfred, S.M.3
  • 18
    • 0034183641 scopus 로고    scopus 로고
    • Three-mode principal components analysis: Choosing the numbers of components and sensitivity to local optima
    • Timmerman ME, Kiers HAL. Three-mode principal components analysis: choosing the numbers of components and sensitivity to local optima. Br. J. Math. Stat. Psychol. 2000; 53: 1-16.
    • (2000) Br. J. Math. Stat. Psychol. , vol.53 , pp. 1-16
    • Timmerman, M.E.1    Kiers, H.A.L.2
  • 19
    • 33745135758 scopus 로고    scopus 로고
    • Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method
    • Ceulemans E, Kiers HAL. Selecting among three-mode principal component models of different types and complexities: a numerical convex hull based method. Br. J.Math. Stat. Psychol. 2006; 59(1): 133-150.
    • (2006) Br. J. Math. Stat. Psychol. , vol.59 , Issue.1 , pp. 133-150
    • Ceulemans, E.1    Kiers, H.A.L.2
  • 20
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978; 6(2): 461-464.
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 21
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974; 19(6): 716-723.
    • (1974) IEEE Trans. Automat. Contr. , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 22
    • 39949083755 scopus 로고    scopus 로고
    • Cross-validation of component models: A critical look at current methods
    • Bro R, Kjeldahl K, Smilde AK, Kiers HAL. Cross-validation of component models: a critical look at current methods. Anal. Bioanal. Chem. 2008; 390(5): 1241-1251.
    • (2008) Anal. Bioanal. Chem. , vol.390 , Issue.5 , pp. 1241-1251
    • Bro, R.1    Kjeldahl, K.2    Smilde, A.K.3    Kiers, H.A.L.4
  • 24
    • 0038685059 scopus 로고    scopus 로고
    • A new efficient method for determining the number of components in parafac models
    • Bro R, Kiers HAL. A new efficient method for determining the number of components in parafac models. J. Chemom. 2003; 17(5): 274-286.
    • (2003) J. Chemom. , vol.17 , Issue.5 , pp. 274-286
    • Bro, R.1    Kiers, H.A.L.2
  • 25
    • 0034144761 scopus 로고    scopus 로고
    • On the best rank-1 and rank-(r1,r2,...,rn) approximation of higher-order tensors
    • de Lathauwer L, de Moor Bart, Vandewalle J. On the best rank-1 and rank-(r1,r2,...,rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 2000; 21(4): 1324-1342.
    • (2000) SIAM J. Matrix Anal. Appl. , vol.21 , Issue.4 , pp. 1324-1342
    • de Lathauwer, L.1    de Moor Bart2    Vandewalle, J.3
  • 26
    • 0038118127 scopus 로고    scopus 로고
    • A fast method for choosing the numbers of components in tucker3 analysis
    • Kiers HAL, der Kinderen A. A fast method for choosing the numbers of components in tucker3 analysis. Br. J. Math. Stat. Psychol. 2003; 56: 119-125.
    • (2003) Br. J. Math. Stat. Psychol. , vol.56 , pp. 119-125
    • Kiers, H.A.L.1    der Kinderen, A.2
  • 27
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • Mackay DJC. Bayesian interpolation. Neural Comput. 1992; 4: 415-447.
    • (1992) Neural Comput , vol.4 , pp. 415-447
    • Mackay, D.J.C.1
  • 30
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
    • Donoho D. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 2006; 59(6): 797-829.
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.1
  • 31
    • 34250922831 scopus 로고
    • The varimax criterion for analytic rotation in factor analysis
    • Kaiser HF. The varimax criterion for analytic rotation in factor analysis. Psychometrica 1958; 23: 187-200.
    • (1958) Psychometrica , vol.23 , pp. 187-200
    • Kaiser, H.F.1
  • 33
    • 0032563594 scopus 로고    scopus 로고
    • Improving the speed of multi-way algorithms: Part I. Tucker3
    • Andersson CA, Bro R. Improving the speed of multi-way algorithms: part I. Tucker3. Chemom. Intell. Lab. Syst. 1998; 42: 93-103.
    • (1998) Chemom. Intell. Lab. Syst. , vol.42 , pp. 93-103
    • Andersson, C.A.1    Bro, R.2
  • 35
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • Tibbing ME. Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001; 1: 211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tibbing, M.E.1
  • 37
    • 0030813663 scopus 로고    scopus 로고
    • Parafac: Tutorial and applications
    • Bro R. Parafac: tutorial and applications. Chemom. Intell. Lab. Syst. 1997; 38: 149-171.
    • (1997) Chemom. Intell. Lab. Syst. , vol.38 , pp. 149-171
    • Bro, R.1
  • 38
    • 0033559991 scopus 로고    scopus 로고
    • Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis
    • Bro R. Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis. Chemom. Intell. Lab. Syst. 1999; 46: 133-147.
    • (1999) Chemom. Intell. Lab. Syst. , vol.46 , pp. 133-147
    • Bro, R.1
  • 39
    • 0037469085 scopus 로고    scopus 로고
    • Jack-knife estimation of standard errors and outlier detection in parafac models
    • Riu J, Bro R. Jack-knife estimation of standard errors and outlier detection in parafac models. Chemom. Intell. Lab. Syst. 2003; 65(1): 35-49.
    • (2003) Chemom. Intell. Lab. Syst. , vol.65 , Issue.1 , pp. 35-49
    • Riu, J.1    Bro, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.