메뉴 건너뛰기




Volumn , Issue , 2010, Pages 211-222

Temporal collaborative filtering with Bayesian probabilistic tensor factorization

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; DISTRIBUTED COMPUTER SYSTEMS; FACTORIZATION; TENSORS;

EID: 80052121737     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972801.19     Document Type: Conference Paper
Times cited : (662)

References (25)
  • 1
    • 84862909536 scopus 로고    scopus 로고
    • Dynamic non-parametric mixture models and the recurrent Chinese restaurant process
    • A. Ahmed and E. P. Xing. Dynamic non-parametric mixture models and the recurrent chinese restaurant process. In Proceedings of SDM 2008, 2008.
    • (2008) Proceedings of SDM , vol.2008
    • Ahmed, A.1    Xing, P.E.2
  • 3
    • 0003713964 scopus 로고    scopus 로고
    • Athena Scientific, Belmont, MA 02178-9998, second edition
    • D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA 02178-9998, second edition, 1999.
    • (1999) Nonlinear Programming
    • Bertsekas, D.P.1
  • 6
    • 84880093915 scopus 로고    scopus 로고
    • Collaborative filtering using orthogonal nonnegative matrix tri-factorization
    • G. Chen, F. Wang, and C. Zhang. Collaborative filtering using orthogonal nonnegative matrix tri-factorization. Information Processing & Management, 42:2863-2875, 2009.
    • (2009) Information Processing & Management , vol.42 , pp. 2863-2875
    • Chen, G.1    Wang, F.2    Zhang, C.3
  • 7
    • 70349250053 scopus 로고    scopus 로고
    • Probabilistic polyadic factorization and its application to personalized recommendation
    • Y. Chi, S. Z. Y. Gong, and Y. Zhang. Probabilistic polyadic factorization and its application to personalized recommendation. In CIKM, 2008.
    • (2008) CIKM
    • Chi, Y.1    Gong, S.Z.Y.2    Zhang, Y.3
  • 10
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika, 57:97-109, 1970.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 12
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • September (to appear)
    • T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3), September 2009 (to appear).
    • (2009) SIAM Review , vol.51 , Issue.3
    • Kolda, T.G.1    Bader, B.W.2
  • 14
    • 70350647708 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Y. Koren. Collaborative filtering with temporal dynamics. In KDD-09, 2009.
    • (2009) KDD-09
    • Koren, Y.1
  • 17
    • 80052403470 scopus 로고    scopus 로고
    • Multi-hdp: A non-parametric Bayesian model for tensor factorization
    • I. Porteous, E. Bart, and M. Welling. Multi-hdp: A non-parametric bayesian model for tensor factorization. In AAAI, 2008.
    • (2008) AAAI
    • Porteous, I.1    Bart, E.2    Welling, M.3
  • 19
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. D. M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In ICML, 2005.
    • (2005) ICML
    • Rennie, J.D.M.1    Srebro, N.2
  • 22
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
    • R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML, 2008.
    • (2008) ICML
    • Salakhutdinov, R.1    Mnih, A.2
  • 23
    • 77957920027 scopus 로고    scopus 로고
    • A latent space approach to dynamic embedding of co-occurrence data
    • P. Sarkar, S. M. Siddiqi, and G. J. Gordon. A latent space approach to dynamic embedding of co-occurrence data. In AISTAT-07, 2007.
    • (2007) AISTAT-07
    • Sarkar, P.1    Siddiqi, S.M.2    Gordon, G.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.