메뉴 건너뛰기




Volumn 42, Issue 4, 2008, Pages 1439-1450

Shift-invariant multilinear decomposition of neuroimaging data

Author keywords

Canonical decomposition (CANDECOMP); CP degeneracy; EEG; Event related averaging; fMRI; Hypermatrix; Multilinear; Parallel factor analysis (PARAFAC); Retinotopic mapping; Shift invariance; Shifted CP (SCP); Uniqueness

Indexed keywords

ALGORITHM; ARTICLE; CONTROLLED STUDY; DECOMPOSITION; ELECTROENCEPHALOGRAM; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; HUMAN EXPERIMENT; LATENT PERIOD; NERVE CONDUCTION; NEUROIMAGING; NORMAL HUMAN; PRIORITY JOURNAL; SIMULATION;

EID: 55349121475     PISSN: 10538119     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2008.05.062     Document Type: Article
Times cited : (86)

References (55)
  • 2
    • 2942597622 scopus 로고    scopus 로고
    • Structure-seeking multilinear methods for the analysis of fMRI data
    • Andersen A.H., and Rayens W.S. Structure-seeking multilinear methods for the analysis of fMRI data Neuroimage 22 2004 728 739
    • (2004) Neuroimage , vol.22 , pp. 728-739
    • Andersen, A.H.1    Rayens, W.S.2
  • 4
    • 14244251502 scopus 로고    scopus 로고
    • Tensorial extensions of independent component analysis for multisubject fMRI analysis
    • Beckmann C., and Smith S. Tensorial extensions of independent component analysis for multisubject fMRI analysis Neuroimage 25 2005 294 311
    • (2005) Neuroimage , vol.25 , pp. 294-311
    • Beckmann, C.1    Smith, S.2
  • 5
    • 0029411030 scopus 로고
    • An information maximization approach to blind source separation and blind deconvolution
    • Bell A.J., and Sejnowski T.J. An information maximization approach to blind source separation and blind deconvolution Neural Comput. 7 1995 1129 1159
    • (1995) Neural Comput. , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 6
    • 0029999731 scopus 로고    scopus 로고
    • Linear systems analysis of functional magnetic resonance imaging in human V1
    • Boynton G., Engel S., Glover G., and Heeger D. Linear systems analysis of functional magnetic resonance imaging in human V1 J. Neurosci. 16 1996 4207 4221
    • (1996) J. Neurosci. , vol.16 , pp. 4207-4221
    • Boynton, G.1    Engel, S.2    Glover, G.3    Heeger, D.4
  • 8
    • 0642334046 scopus 로고    scopus 로고
    • A fast non-negativity-constrained least squares algorithm
    • Bro R., and de Jong S. A fast non-negativity-constrained least squares algorithm J. Chemometrics 11 5 1997 393 401
    • (1997) J. Chemometrics , vol.11 , Issue.5 , pp. 393-401
    • Bro, R.1    De Jong, S.2
  • 9
    • 0038685059 scopus 로고    scopus 로고
    • A new efficient method for determining the number of components in PARAFAC models
    • Bro R., and Kiers H.A.L. A new efficient method for determining the number of components in PARAFAC models J. Chemometrics 17 5 2003 274 286
    • (2003) J. Chemometrics , vol.17 , Issue.5 , pp. 274-286
    • Bro, R.1    Kiers, H.A.L.2
  • 10
    • 0031809018 scopus 로고    scopus 로고
    • Dynamics of blood flow and oxygenation changes during brain activation: The balloon model
    • Buxton R.B., Wong E.C., and Frank L.R. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model Magn. Reson. Med 39 6 1998 855 864
    • (1998) Magn. Reson. Med , vol.39 , Issue.6 , pp. 855-864
    • Buxton, R.B.1    Wong, E.C.2    Frank, L.R.3
  • 11
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an N-way generalization of "eckart-Young" decomposition
    • Carroll J.D., and Chang J.J. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition Psychometrika 35 1970 283 319
    • (1970) Psychometrika , vol.35 , pp. 283-319
    • Carroll, J.D.1    Chang, J.J.2
  • 12
    • 55349142218 scopus 로고    scopus 로고
    • Tensor rank and the ill-posedness of the best low-rank approximation problem
    • to appear.
    • de Silva, V., Lim, L.-H., 2008. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl., to appear.
    • (2008) SIAM J. Matrix Anal. Appl.
    • De Silva, V.1    Lim, L.-H.2
  • 14
    • 1242283941 scopus 로고    scopus 로고
    • EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
    • Delorme A., and Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis J. Neurosci. Methods 134 2004 9 21
    • (2004) J. Neurosci. Methods , vol.134 , pp. 9-21
    • Delorme, A.1    Makeig, S.2
  • 17
    • 0032132132 scopus 로고    scopus 로고
    • Estimation of time delays between unknown colored signals
    • Emile B., and Comon P. Estimation of time delays between unknown colored signals Signal Process. 68 1 1998 93 100
    • (1998) Signal Process. , vol.68 , Issue.1 , pp. 93-100
    • Emile, B.1    Comon, P.2
  • 18
    • 0030935592 scopus 로고    scopus 로고
    • Retinotopic organization in human visual cortex and the spatial precision of functional MRI
    • Engel S., Glover G., and Wandell B. Retinotopic organization in human visual cortex and the spatial precision of functional MRI Cereb Cortex. 7 2 1997 181 192
    • (1997) Cereb Cortex. , vol.7 , Issue.2 , pp. 181-192
    • Engel, S.1    Glover, G.2    Wandell, B.3
  • 19
    • 0026000010 scopus 로고
    • Topographic component (parallel factor) analysis of multichannel evoked potentials: Practical issues in trilinear spatiotemporal decomposition
    • Field A.S., and Graupe D. Topographic component (parallel factor) analysis of multichannel evoked potentials: practical issues in trilinear spatiotemporal decomposition Brain Topogr. 3 4 1991 407 423
    • (1991) Brain Topogr. , vol.3 , Issue.4 , pp. 407-423
    • Field, A.S.1    Graupe, D.2
  • 21
    • 0033934775 scopus 로고    scopus 로고
    • Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
    • Glover G.H., Li T.Q., and Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR Magn. Reson. Med. 44 1 2000 162 167
    • (2000) Magn. Reson. Med. , vol.44 , Issue.1 , pp. 162-167
    • Glover, G.H.1    Li, T.Q.2    Ress, D.3
  • 22
    • 33747002700 scopus 로고    scopus 로고
    • Location of brain rhythms and their modulation by preparatory attention estimated by current density
    • Gómez C., Marco-Pallarés J., and Grau C. Location of brain rhythms and their modulation by preparatory attention estimated by current density Brain Res. 1107 2006 151 160
    • (2006) Brain Res. , vol.1107 , pp. 151-160
    • Gómez, C.1    Marco-Pallarés, J.2    Grau, C.3
  • 23
    • 33745907563 scopus 로고    scopus 로고
    • Oscillatory brain activity in the human EEG during indirect and direct memory tasks
    • Gruber T., and Müller M. Oscillatory brain activity in the human EEG during indirect and direct memory tasks Brain Res. 1097 2006 194 204
    • (2006) Brain Res. , vol.1097 , pp. 194-204
    • Gruber, T.1    Müller, M.2
  • 24
    • 0002740437 scopus 로고
    • Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis
    • Harshman R.A. Foundations of the PARAFAC procedure: models and conditions for an "explanatory" multi-modal factor analysis UCLA Working Papers in Phonetics 16 1970 1 84
    • (1970) UCLA Working Papers in Phonetics , vol.16 , pp. 1-84
    • Harshman, R.A.1
  • 25
    • 0002740439 scopus 로고
    • Determination and proof of minimum uniqueness conditions for PARAFAC1
    • Harshman R.A. Determination and proof of minimum uniqueness conditions for PARAFAC1 UCLA Working Papers in Phonetics 22 1972 111 117
    • (1972) UCLA Working Papers in Phonetics , vol.22 , pp. 111-117
    • Harshman, R.A.1
  • 26
    • 0002549412 scopus 로고
    • Data preprocessing and the extended PARAFAC model
    • H.G. Law C.W. Snyder Jr. J.A. Hattie R.P. McDonald Praeger
    • Harshman R.A., and Lundy M.E. Data preprocessing and the extended PARAFAC model H.G. Law C.W. Snyder Jr. J.A. Hattie R.P. McDonald Research Methods for Multimode Data Analysis 1984 Praeger 216 281
    • (1984) Research Methods for Multimode Data Analysis , pp. 216-281
    • Harshman, R.A.1    Lundy, M.E.2
  • 27
    • 0142043333 scopus 로고    scopus 로고
    • Shifted factor analysis part I: Models and properties
    • Harshman R., Hong S., and Lundy M. Shifted factor analysis part I: models and properties J. Chemometrics 17 2003 363 378
    • (2003) J. Chemometrics , vol.17 , pp. 363-378
    • Harshman, R.1    Hong, S.2    Lundy, M.3
  • 28
    • 0142075211 scopus 로고    scopus 로고
    • Shifted factor analysis part II: Algorithms
    • Harshman R., Hong S., and Lundy M. Shifted factor analysis part II: algorithms J. Chemometrics 17 2003 379 388
    • (2003) J. Chemometrics , vol.17 , pp. 379-388
    • Harshman, R.1    Hong, S.2    Lundy, M.3
  • 29
    • 4143050347 scopus 로고    scopus 로고
    • Cognitive functions of gamma-band activity: Memory match and utilization
    • Herrmann C., Munk M., and Engel A. Cognitive functions of gamma-band activity: memory match and utilization Trends Cogn. Sci. 8 8 2004 347 355
    • (2004) Trends Cogn. Sci. , vol.8 , Issue.8 , pp. 347-355
    • Herrmann, C.1    Munk, M.2    Engel, A.3
  • 31
    • 0142011494 scopus 로고    scopus 로고
    • Shifted factor analysis part III: N-way generalization and application
    • Hong S., and Harshman R.A. Shifted factor analysis part III: N-way generalization and application J. Chemometrics 17 2003 389 399
    • (2003) J. Chemometrics , vol.17 , pp. 389-399
    • Hong, S.1    Harshman, R.A.2
  • 32
    • 33646183693 scopus 로고    scopus 로고
    • Differentially variable component analysis: Identifying multiple evoked components using trial-to-trial variability
    • Knuth K., Shah A., Truccolo W., Ding M., Bressler S., and Schroeder C. Differentially variable component analysis: identifying multiple evoked components using trial-to-trial variability J. Neurophysiol. 95 2006 3257 3276
    • (2006) J. Neurophysiol. , vol.95 , pp. 3257-3276
    • Knuth, K.1    Shah, A.2    Truccolo, W.3    Ding, M.4    Bressler, S.5    Schroeder, C.6
  • 33
    • 48749101457 scopus 로고
    • Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
    • Kruskal J. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics Linear Algebra Appl. 18 1977 95 138
    • (1977) Linear Algebra Appl. , vol.18 , pp. 95-138
    • Kruskal, J.1
  • 34
    • 29244477177 scopus 로고    scopus 로고
    • Non-white noise in fMRI: Does modelling have an impact?
    • Lund T., Madsen K., Sidaros K., Luo W., and Nichols T. Non-white noise in fMRI: does modelling have an impact? Neuroimage 29 2006 54 66
    • (2006) Neuroimage , vol.29 , pp. 54-66
    • Lund, T.1    Madsen, K.2    Sidaros, K.3    Luo, W.4    Nichols, T.5
  • 35
    • 85078284647 scopus 로고    scopus 로고
    • Independent component analysis of electroencephalographic data
    • D.S. Touretzky M.C. Mozer M.E. Hasselmo MIT Press
    • Makeig S., Bell A.J., Jung T.-P., and Sejnowski T.J. Independent component analysis of electroencephalographic data D.S. Touretzky M.C. Mozer M.E. Hasselmo Adv. Neural Inform. Process. Syst. 8 1996 MIT Press 145 151
    • (1996) Adv. Neural Inform. Process. Syst. , vol.8 , pp. 145-151
    • Makeig, S.1    Bell, A.J.2    Jung, T.-P.3    Sejnowski, T.J.4
  • 36
    • 0030931604 scopus 로고    scopus 로고
    • Blind separation of auditory event-related brain responses into independent components
    • Makeig S., Jung T.-P., Bell A., Ghahremani D., and Sejnowski T. Blind separation of auditory event-related brain responses into independent components Proc. Natl. Acad. Sci. 94 1997 10979 10984
    • (1997) Proc. Natl. Acad. Sci. , vol.94 , pp. 10979-10984
    • Makeig, S.1    Jung, T.-P.2    Bell, A.3    Ghahremani, D.4    Sejnowski, T.5
  • 39
    • 0242404415 scopus 로고    scopus 로고
    • Independent component analysis of functional MRI: What is signal and what is noise?
    • McKeown M.J., Hansen L.K., and Sejnowski T.J. Independent component analysis of functional MRI: what is signal and what is noise? Curr. Opin. Neurobiol. 13 5 2003 620 629
    • (2003) Curr. Opin. Neurobiol. , vol.13 , Issue.5 , pp. 620-629
    • McKeown, M.J.1    Hansen, L.K.2    Sejnowski, T.J.3
  • 41
    • 0024023333 scopus 로고
    • Topographic components model for event-related potentials and some biophysical considerations
    • Möcks J. Topographic components model for event-related potentials and some biophysical considerations IEEE Trans. Biomed. Eng. 35 1988 482 484
    • (1988) IEEE Trans. Biomed. Eng. , vol.35 , pp. 482-484
    • Möcks, J.1
  • 42
    • 31044456392 scopus 로고    scopus 로고
    • Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG
    • Mørup M., Hansen L.K., Herrmann C.S., Parnas J., and Arnfred S.M. Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG Neuroimage 29 3 2006 938 947
    • (2006) Neuroimage , vol.29 , Issue.3 , pp. 938-947
    • Mørup, M.1    Hansen, L.K.2    Herrmann, C.S.3    Parnas, J.4    Arnfred, S.M.5
  • 45
    • 33947613170 scopus 로고    scopus 로고
    • New vistas for alpha-frequency band oscillations
    • Palva S., and Palva J. New vistas for alpha-frequency band oscillations Trends Neurosci. 30 2007 150 158
    • (2007) Trends Neurosci. , vol.30 , pp. 150-158
    • Palva, S.1    Palva, J.2
  • 46
    • 27744594394 scopus 로고    scopus 로고
    • The functional significance of mu rhythms: Translating "seeing" and "hearing" into "doing"
    • Pineda J. The functional significance of mu rhythms: translating "seeing" and "hearing" into "doing" Brain Res. Rev. 50 2005 57 68
    • (2005) Brain Res. Rev. , vol.50 , pp. 57-68
    • Pineda, J.1
  • 48
    • 0034974968 scopus 로고    scopus 로고
    • Electrophysiological estimate of human cortical magnification
    • Slotnick S.D., Klein S.A., Carney T., and Sutter E.E. Electrophysiological estimate of human cortical magnification Clin. Neurophysiol. 112 7 2001 1349 1356
    • (2001) Clin. Neurophysiol. , vol.112 , Issue.7 , pp. 1349-1356
    • Slotnick, S.D.1    Klein, S.A.2    Carney, T.3    Sutter, E.E.4
  • 49
    • 38949176012 scopus 로고    scopus 로고
    • Degeneracy in CANDECOMP/PARAFAC and INDSC AL explained for several three-sliced arrays with a two-valued typical rank
    • Stegeman A. Degeneracy in CANDECOMP/PARAFAC and INDSC AL explained for several three-sliced arrays with a two-valued typical rank Psychometrika 72 4 2007 601 619
    • (2007) Psychometrika , vol.72 , Issue.4 , pp. 601-619
    • Stegeman, A.1
  • 51
    • 0029725825 scopus 로고    scopus 로고
    • Blind separation of delayed sources based on information-maximization
    • Torkkola K. Blind separation of delayed sources based on information-maximization Int. Conf. Acoustics, Speech, Signal Process. 6 1996 3509 3512
    • (1996) Int. Conf. Acoustics, Speech, Signal Process. , vol.6 , pp. 3509-3512
    • Torkkola, K.1
  • 52
    • 0347568269 scopus 로고    scopus 로고
    • Estimation of single-trial multicomponent ERPs: Differentially variable component analysis (dVCA)
    • Truccolo W., Knuth K., Shah A., Bressler S., Schroeder C., and Ding M. Estimation of single-trial multicomponent ERPs: differentially variable component analysis (dVCA) Biol. Cybern. 89 2003 426 438
    • (2003) Biol. Cybern. , vol.89 , pp. 426-438
    • Truccolo, W.1    Knuth, K.2    Shah, A.3    Bressler, S.4    Schroeder, C.5    Ding, M.6
  • 53
    • 0033944474 scopus 로고    scopus 로고
    • Trilinear modeling of event-related potentials
    • Wang K., Begleiter H., and Porjesz B. Trilinear modeling of event-related potentials Brain Topogr. 12 4 2000 263 271
    • (2000) Brain Topogr. , vol.12 , Issue.4 , pp. 263-271
    • Wang, K.1    Begleiter, H.2    Porjesz, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.