메뉴 건너뛰기




Volumn 29, Issue 5, 2015, Pages 1343-1373

Clustering Boolean tensors

Author keywords

Approximation; Boolean algebra; Clustering; Decomposition; Tensors

Indexed keywords

ALGEBRA; ALGORITHMS; APPROXIMATION ALGORITHMS; BINS; BOOLEAN ALGEBRA; COMPLEX NETWORKS; DECOMPOSITION; FACTORIZATION; MATRIX ALGEBRA; TENSORS; VIRTUAL REALITY;

EID: 84939566798     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-015-0420-3     Document Type: Article
Times cited : (16)

References (38)
  • 1
    • 0038046968 scopus 로고    scopus 로고
    • On two segmentation problems
    • Alon N, Sudakov B (1999) On two segmentation problems. J Algorithm 33:173–184
    • (1999) J Algorithm , vol.33 , pp. 173-184
    • Alon, N.1    Sudakov, B.2
  • 2
    • 84878753796 scopus 로고    scopus 로고
    • Optimal factorization of three-way binary data using triadic concepts
    • Bělohlávek R, Glodeanu C, Vychodil V (2012) Optimal factorization of three-way binary data using triadic concepts. Order 30(2):437–454
    • (2012) Order , vol.30 , Issue.2 , pp. 437-454
    • Bělohlávek, R.1    Glodeanu, C.2    Vychodil, V.3
  • 3
    • 82555195625 scopus 로고    scopus 로고
    • Cantador I, Brusilovsky P, Kuflik T (2011) 2nd Workshop on Information Heterogeneity and Fusion in Recommender Systems (HetRec ’11). In: 5th ACM Conference on Recommender Systems (RecSys’11)
    • Cantador I, Brusilovsky P, Kuflik T (2011) 2nd Workshop on Information Heterogeneity and Fusion in Recommender Systems (HetRec ’11). In: 5th ACM Conference on Recommender Systems (RecSys’11)
  • 4
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition
    • Carroll JD, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3):283–319
    • (1970) Psychometrika , vol.35 , Issue.3 , pp. 283-319
    • Carroll, J.D.1    Chang, J.J.2
  • 7
    • 84871551012 scopus 로고    scopus 로고
    • On tensors, sparsity, and nonnegative factorizations
    • Chi EC, Kolda TG (2012) On tensors, sparsity, and nonnegative factorizations. SIAM J Matrix Anal Appl 33(4):1272–1299
    • (2012) SIAM J Matrix Anal Appl , vol.33 , Issue.4 , pp. 1272-1299
    • Chi, E.C.1    Kolda, T.G.2
  • 8
    • 0002806690 scopus 로고    scopus 로고
    • OpenMP: an industry standard API for shared-memory programming
    • Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory programming. IEEE Comput Sci Eng Mag 5(1):46–55
    • (1998) IEEE Comput Sci Eng Mag , vol.5 , Issue.1 , pp. 46-55
    • Dagum, L.1    Menon, R.2
  • 9
    • 84889591026 scopus 로고    scopus 로고
    • Discovering facts with boolean tensor tucker decomposition. In: 22nd ACM International Conference on Information & Knowledge Management (CIKM ’13)
    • Erdős D, Miettinen P (2013a) Discovering facts with boolean tensor tucker decomposition. In: 22nd ACM International Conference on Information & Knowledge Management (CIKM ’13), pp 1569–1572
    • (2013) Pp 1569–1572
    • Erdős, D.1    Miettinen, P.2
  • 10
    • 84894646522 scopus 로고    scopus 로고
    • Walk’n’Merge: a scalable algorithm for Boolean tensor factorization. In: 13th IEEE International Conference on Data Mining (ICDM ’13)
    • Erdős D, Miettinen P (2013b) Walk’n’Merge: a scalable algorithm for Boolean tensor factorization. In: 13th IEEE International Conference on Data Mining (ICDM ’13), pp 1037–1042
    • (2013) Pp 1037–1042
    • Erdős, D.1    Miettinen, P.2
  • 11
    • 33744905816 scopus 로고
    • Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multimodal factor analysis. Tech. Rep. 16
    • Harshman RA (1970) Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multimodal factor analysis. Tech. Rep. 16, UCLA Working Papers in Phonetics
    • (1970) UCLA Working Papers
    • Harshman, R.A.1
  • 12
    • 65149091304 scopus 로고    scopus 로고
    • Simultaneous tensor subspace selection and clustering: the equivalence of high order SVD and k-means clustering. In: 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’08)
    • Huang H, Ding C, Luo D, Li T (2008) Simultaneous tensor subspace selection and clustering: the equivalence of high order SVD and k-means clustering. In: 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’08), pp 327–335
    • (2008) Pp 327–335
    • Huang, H.1    Ding, C.2    Luo, D.3    Li, T.4
  • 13
    • 79960318872 scopus 로고    scopus 로고
    • From triconcepts to triclusters. In: 13th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC ’11)
    • Ignatov DI, Kuznetsov SO, Magizov RA, Zhukov LE (2011) From triconcepts to triclusters. In: 13th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC ’11), pp 257–264
    • (2011) Pp 257–264
    • Ignatov, D.I.1    Kuznetsov, S.O.2    Magizov, R.A.3    Zhukov, L.E.4
  • 14
    • 77952042297 scopus 로고    scopus 로고
    • Approximation algorithms for tensor clustering. In: International Conference on Algorithmic Learning Theory (ALT ’09)
    • Jegelka S, Sra S, Banerjee A (2009) Approximation algorithms for tensor clustering. In: International Conference on Algorithmic Learning Theory (ALT ’09), pp 368–383
    • (2009) Pp 368–383
    • Jegelka, S.1    Sra, S.2    Banerjee, A.3
  • 15
    • 84939571054 scopus 로고    scopus 로고
    • Pattern extraction and clustering for high-dimensional discrete data. PhD thesis
    • Jiang P (2014) Pattern extraction and clustering for high-dimensional discrete data. PhD thesis, University of Illinois at Urbana-Champaign
    • (2014) University of Illinois at Urbana-Champaign
    • Jiang, P.1
  • 16
    • 83055166026 scopus 로고    scopus 로고
    • Approximate tensor decomposition within a tensor-relational algebraic framework. In: 20th ACM International Conference on Information & Knowledge Management (CIKM ’11)
    • Kim M, Candan KS (2011) Approximate tensor decomposition within a tensor-relational algebraic framework. In: 20th ACM International Conference on Information & Knowledge Management (CIKM ’11), pp 1737–1742
    • (2011) Pp 1737–1742
    • Kim, M.1    Candan, K.S.2
  • 17
    • 84871037251 scopus 로고    scopus 로고
    • Decomposition-by-normalization (DBN): leveraging approximate functional dependencies for efficient tensor decomposition. In: 21st ACM International Conference on Information & Knowledge Management (CIKM ’12)
    • Kim M, Candan KS (2012) Decomposition-by-normalization (DBN): leveraging approximate functional dependencies for efficient tensor decomposition. In: 21st ACM International Conference on Information & Knowledge Management (CIKM ’12), pp 355–364
    • (2012) Pp 355–364
    • Kim, M.1    Candan, K.S.2
  • 18
    • 84907015092 scopus 로고    scopus 로고
    • Pushing-down tensor decompositions over unions to promote reuse of materialized decompositions. In: European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD ’14)
    • Kim M, Candan KS (2014) Pushing-down tensor decompositions over unions to promote reuse of materialized decompositions. In: European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD ’14), pp 688–704
    • (2014) Pp 688–704
    • Kim, M.1    Candan, K.S.2
  • 21
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500
    • (2009) SIAM Rev , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 24
    • 79951759146 scopus 로고    scopus 로고
    • Matrix Decomposition methods for data mining: computational complexity and algorithms. PhD thesis, Department of Computer Science
    • Miettinen P (2009) Matrix Decomposition methods for data mining: computational complexity and algorithms. PhD thesis, Department of Computer Science, University of Helsinki
    • (2009) University of Helsinki
    • Miettinen, P.1
  • 25
    • 79951733758 scopus 로고    scopus 로고
    • Sparse Boolean matrix factorizations. In: 10th IEEE International Conference on Data Mining (ICDM ’10)
    • Miettinen P (2010) Sparse Boolean matrix factorizations. In: 10th IEEE International Conference on Data Mining (ICDM ’10), pp 935–940
    • (2010) Pp 935–940
    • Miettinen, P.1
  • 26
    • 84857185730 scopus 로고    scopus 로고
    • Boolean tensor factorizations. In: 11th IEEE International Conference on Data Mining (ICDM ’11)
    • Miettinen P (2011) Boolean tensor factorizations. In: 11th IEEE International Conference on Data Mining (ICDM ’11), pp 447–456
    • (2011) Pp 447–456
    • Miettinen, P.1
  • 27
    • 84908225464 scopus 로고    scopus 로고
    • MDL4BMF: minimum description length for Boolean matrix factorization
    • Miettinen P, Vreeken J (2014) MDL4BMF: minimum description length for Boolean matrix factorization. ACM Trans Knowl Discov Data 8(4):18
    • (2014) ACM Trans Knowl Discov Data , vol.8 , Issue.4 , pp. 18
    • Miettinen, P.1    Vreeken, J.2
  • 30
    • 84866867881 scopus 로고    scopus 로고
    • ParCube: sparse parallelizable tensor decompositions. In: European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD ’12)
    • Papalexakis EE, Faloutsos C, Sidiropoulos ND (2012) ParCube: sparse parallelizable tensor decompositions. In: European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD ’12), pp 521–536
    • (2012) Pp 521–536
    • Papalexakis, E.E.1    Faloutsos, C.2    Sidiropoulos, N.D.3
  • 31
    • 84872112858 scopus 로고    scopus 로고
    • From K-means to higher-way co-clustering: multilinear decomposition with sparse latent factors
    • Papalexakis EE, Sidiropoulos N, Bro R (2013) From K-means to higher-way co-clustering: multilinear decomposition with sparse latent factors. IEEE Trans Signal Process 61(2):493–506
    • (2013) IEEE Trans Signal Process , vol.61 , Issue.2 , pp. 493-506
    • Papalexakis, E.E.1    Sidiropoulos, N.2    Bro, R.3
  • 32
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen J (1978) Modeling by shortest data description. Automatica 14(5):465–471
    • (1978) Automatica , vol.14 , Issue.5 , pp. 465-471
    • Rissanen, J.1
  • 33
    • 10444255508 scopus 로고    scopus 로고
    • Upper bound for the approximation ratio of a class of hypercube segmentation algorithms
    • Seppänen JK (2005) Upper bound for the approximation ratio of a class of hypercube segmentation algorithms. Inform Process Lett 93(3):139–141
    • (2005) Inform Process Lett , vol.93 , Issue.3 , pp. 139-141
    • Seppänen, J.K.1
  • 34
    • 35148867982 scopus 로고    scopus 로고
    • Yago: a core of semantic knowledge. In: 16th International Conference on World Wide Web (WWW ’07)
    • Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. In: 16th International Conference on World Wide Web (WWW ’07), pp 697–706
    • (2007) Pp 697–706
    • Suchanek, F.M.1    Kasneci, G.2    Weikum, G.3
  • 35
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31(3):279–311
    • (1966) Psychometrika , vol.31 , Issue.3 , pp. 279-311
    • Tucker, L.R.1
  • 36
    • 84995477295 scopus 로고    scopus 로고
    • On the evolution of user interaction in Facebook. In: 2nd ACM Workshop on Online Social Networks (WOSN ’09)
    • Viswanath B, Mislove A, Cha M, Gummadi KP (2009) On the evolution of user interaction in Facebook. In: 2nd ACM Workshop on Online Social Networks (WOSN ’09), pp 37–42
    • (2009) Pp 37–42
    • Viswanath, B.1    Mislove, A.2    Cha, M.3    Gummadi, K.P.4
  • 37
    • 65349191273 scopus 로고    scopus 로고
    • Unsupervised methods for determining object and relation synonyms on the web
    • Yates A, Etzioni O (2009) Unsupervised methods for determining object and relation synonyms on the web. J Artif Intell Res 34:255–296
    • (2009) J Artif Intell Res , vol.34 , pp. 255-296
    • Yates, A.1    Etzioni, O.2
  • 38
    • 29844442223 scopus 로고    scopus 로고
    • TRICLUSTER: an effective algorithm for mining coherent clusters in 3D microarray data. In: ACM SIGMOD International Conference on Management of Data (SIGMOD ’05)
    • Zhao L, Zaki MJ (2005) TRICLUSTER: an effective algorithm for mining coherent clusters in 3D microarray data. In: ACM SIGMOD International Conference on Management of Data (SIGMOD ’05), pp 694–705
    • (2005) Pp 694–705
    • Zhao, L.1    Zaki, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.