메뉴 건너뛰기




Volumn 30, Issue 5, 2015, Pages 1002-1029

Newton-based optimization for Kullback-Leibler nonnegative tensor factorizations

Author keywords

Kullback Leibler; multilinear algebra; nonlinear optimization; poisson; tensor factorization

Indexed keywords

FACTORIZATION; NEWTON-RAPHSON METHOD; NONLINEAR PROGRAMMING;

EID: 84940448141     PISSN: 10556788     EISSN: 10294937     Source Type: Journal    
DOI: 10.1080/10556788.2015.1009977     Document Type: Article
Times cited : (60)

References (44)
  • 1
    • 79951898361 scopus 로고    scopus 로고
    • A scalable optimization approach for fitting canonical tensor decompositions
    • E. Acar, D.M. Dunlavy, and, T.G. Kolda., A scalable optimization approach for fitting canonical tensor decompositions, J. Chemom. 25 (2011), pp. 67-86. doi: 10.1002/cem.1335
    • (2011) J. Chemom. , vol.25 , pp. 67-86
    • Acar, E.1    Dunlavy, D.M.2    Kolda, T.G.3
  • 3
    • 84892000258 scopus 로고    scopus 로고
    • Discussion tracking in Enron email using PARAFAC
    • M.W. Berry and M. Castellanos, eds. 2nd ed. Springer, New York (Chapter 8)
    • B.W. Bader, M.W. Berry, and, M. Browne.,. Discussion tracking in Enron email using PARAFAC, in Survey of Text Mining: Clustering, Classification, and Retrieval, M.W. Berry and M. Castellanos, eds., 2nd ed., Springer, New York, 2007, pp. 147-162 (Chapter 8).
    • (2007) Survey of Text Mining: Clustering, Classification, and Retrieval , pp. 147-162
    • Bader, B.W.1    Berry, M.W.2    Browne, M.3
  • 5
    • 0016948909 scopus 로고
    • On the Goldstein-Levitin-Polyak gradient projection method
    • D. Bertsekas., On the Goldstein-Levitin-Polyak gradient projection method, IEEE Trans. Autom. Control 21 (1976), pp. 174-184. doi: 10.1109/TAC.1976.1101194
    • (1976) IEEE Trans. Autom. Control , vol.21 , pp. 174-184
    • Bertsekas, D.1
  • 6
    • 0000377218 scopus 로고
    • Projected Newton methods for optimization problems with simple constraints
    • D.P. Bertsekas., Projected Newton methods for optimization problems with simple constraints, SIAM J. Control Optim. 20 (1982), pp. 221-246. doi: 10.1137/0320018
    • (1982) SIAM J. Control Optim. , vol.20 , pp. 221-246
    • Bertsekas, D.P.1
  • 8
    • 0642334046 scopus 로고    scopus 로고
    • A fast non-negativity-constrained least squares algorithm
    • R. Bro, and, S.D. Jong., A fast non-negativity-constrained least squares algorithm, J. Chemom. 11 (1997), pp. 393-401. doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393:AID-CEM483>3.0.CO;2-L
    • (1997) J. Chemom. , vol.11 , pp. 393-401
    • Bro, R.1    Jong, S.D.2
  • 9
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • R.H. Byrd, P. Lu, J. Nocedal, and, C. Zhu., A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput. 16 (1995), pp. 1190-1208. doi: 10.1137/0916069
    • (1995) SIAM J. Sci. Comput. , vol.16 , pp. 1190-1208
    • Byrd, R.H.1    Lu, P.2    Nocedal, J.3    Zhu, C.4
  • 10
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition
    • J.D. Carroll, and, J.J. Chang., Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition, Psychometrika 35 (1970), pp. 283-319. doi: 10.1007/BF02310791
    • (1970) Psychometrika , vol.35 , pp. 283-319
    • Carroll, J.D.1    Chang, J.J.2
  • 11
    • 84871551012 scopus 로고    scopus 로고
    • On tensors, sparsity, and nonnegative factorizations
    • E.C. Chi, and, T.G. Kolda., On tensors, sparsity, and nonnegative factorizations, SIAM J. Matrix Anal. Appl. 33 (2012), pp. 1272-1299. doi: 10.1137/110859063
    • (2012) SIAM J. Matrix Anal. Appl. , vol.33 , pp. 1272-1299
    • Chi, E.C.1    Kolda, T.G.2
  • 12
    • 74449093261 scopus 로고    scopus 로고
    • Fast local algorithms for large scale nonnegative matrix and tensor factorizations
    • A. Cichocki, and, A.-H. Phan., Fast local algorithms for large scale nonnegative matrix and tensor factorizations, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92 (2009), pp. 708-721. doi: 10.1587/transfun.E92.A.708
    • (2009) IEICE Trans. Fundam. Electron. Commun. Comput. Sci. , vol.92 , pp. 708-721
    • Cichocki, A.1    Phan, A.-H.2
  • 13
    • 0002467356 scopus 로고
    • Global convergence of a class of trust region algorithms for optimization with simple bounds
    • A.R. Conn, N.I.M. Gould, and, Ph.L. Toint., Global convergence of a class of trust region algorithms for optimization with simple bounds, SIAM J. Numer. Anal. 25 (1988), pp. 433-460. doi: 10.1137/0725029
    • (1988) SIAM J. Numer. Anal. , vol.25 , pp. 433-460
    • Conn, A.R.1    Gould, N.I.M.2    Toint, Ph.L.3
  • 14
    • 79952552980 scopus 로고    scopus 로고
    • Temporal link prediction using tensor and matrix factorizations
    • D.M. Dunlavy, T.G. Kolda, and, E. Acar., Temporal link prediction using tensor and matrix factorizations, ACM Trans. Knowl. Discovery Data 5 (2011), pp. 1-27. doi: 10.1145/1921632.1921636
    • (2011) ACM Trans. Knowl. Discovery Data , vol.5 , pp. 1-27
    • Dunlavy, D.M.1    Kolda, T.G.2    Acar, E.3
  • 15
    • 47249112550 scopus 로고    scopus 로고
    • Computing nonnegative tensor factorizations
    • M.P. Friedlander, and, K. Hatz., Computing nonnegative tensor factorizations, Comput. Optim. Appl. 23 (2008), pp. 631-647.
    • (2008) Comput. Optim. Appl. , vol.23 , pp. 631-647
    • Friedlander, M.P.1    Hatz, K.2
  • 19
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
    • H. Kim, and, H. Park., Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method, SIAM J. Matrix Anal. Appl. 30 (2008), pp. 713-730. doi: 10.1137/07069239X
    • (2008) SIAM J. Matrix Anal. Appl. , vol.30 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 20
    • 84949178333 scopus 로고    scopus 로고
    • Fast nonnegative tensor factorization with an active-set-like method
    • M.W. Berry, K.A. Gallivan, E. Gallopoulos, A. Grama, B. Philippe, Y. Saad, and F. Saied, eds. Springer-Verlag, London
    • J. Kim, and, H. Park.,. Fast nonnegative tensor factorization with an active-set-like method, in High-Performance Scientific Computing, Algorithms and Applications, M.W. Berry, K.A. Gallivan, E. Gallopoulos, A. Grama, B. Philippe, Y. Saad, and F. Saied, eds., Springer-Verlag, London, 2012, pp. 311-326.
    • (2012) High-Performance Scientific Computing, Algorithms and Applications , pp. 311-326
    • Kim, J.1    Park, H.2
  • 21
    • 70350175761 scopus 로고    scopus 로고
    • Fast projection-based methods for the least squares non-negative matrix approximation problem
    • D. Kim, S. Sra, and, I.S. Dhillon., Fast projection-based methods for the least squares non-negative matrix approximation problem, Stat. Anal. Data Min. 1 (2008), pp. 38-51. doi: 10.1002/sam.104
    • (2008) Stat. Anal. Data Min. , vol.1 , pp. 38-51
    • Kim, D.1    Sra, S.2    Dhillon, I.S.3
  • 22
    • 79251469431 scopus 로고    scopus 로고
    • Tackling box-constrained optimization via a new projected quasi-Newton approach
    • D. Kim, S. Sra, and, I.S. Dhillon., Tackling box-constrained optimization via a new projected quasi-Newton approach, SIAM J. Sci. Comput. 32 (2010), pp. 3548-3563. doi: 10.1137/08073812X
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 3548-3563
    • Kim, D.1    Sra, S.2    Dhillon, I.S.3
  • 23
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T.G. Kolda, and, B.W. Bader., Tensor decompositions and applications, SIAM Rev. 51 (2009), pp. 455-500. doi: 10.1137/07070111X
    • (2009) SIAM Rev. , vol.51 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 24
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee, and, H.S. Seung., Learning the parts of objects by non-negative matrix factorization, Nature 401 (1999), pp. 788-791. doi: 10.1038/44565
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 25
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D.D. Lee, and, H.S. Seung., Algorithms for non-negative matrix factorization, Adv. Neural Inform. Process. Syst. 13 (2001), pp. 556-562.
    • (2001) Adv. Neural Inform. Process. Syst. , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 27
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C.J. Lin., Projected gradient methods for nonnegative matrix factorization, Neural Comput. 19 (2007), pp. 2756-2779. doi: 10.1162/neco.2007.19.10.2756
    • (2007) Neural Comput. , vol.19 , pp. 2756-2779
    • Lin, C.J.1
  • 28
    • 80052781908 scopus 로고    scopus 로고
    • Sparse non-negative tensor factorization using columnwise coordinate descent
    • J. Liu, J. Liu, P. Wonka, and, J. Ye., Sparse non-negative tensor factorization using columnwise coordinate descent, Pattern Recognit. Lett. 45 (2012), pp. 649-656. doi: 10.1016/j.patcog.2011.05.015
    • (2012) Pattern Recognit. Lett. , vol.45 , pp. 649-656
    • Liu, J.1    Liu, J.2    Wonka, P.3    Ye, J.4
  • 29
    • 84966262179 scopus 로고
    • Updating quasi-Newton matrices with limited storage
    • J. Nocedal., Updating quasi-Newton matrices with limited storage, Math. Comput. 35 (1980), pp. 773-782. doi: 10.1090/S0025-5718-1980-0572855-7
    • (1980) Math. Comput. , vol.35 , pp. 773-782
    • Nocedal, J.1
  • 31
    • 0030775193 scopus 로고    scopus 로고
    • A weighted non-negative least squares algorithm for three-way PARAFAC factor analysis
    • P. Paatero., A weighted non-negative least squares algorithm for three-way PARAFAC factor analysis, Chemom. Intell. Lab. Syst. 38 (1997), pp. 223-242. doi: 10.1016/S0169-7439(97)00031-2
    • (1997) Chemom. Intell. Lab. Syst. , vol.38 , pp. 223-242
    • Paatero, P.1
  • 32
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero, and, U. Tapper., Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics 5 (1994), pp. 111-126. doi: 10.1002/env.3170050203
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 33
    • 78650216518 scopus 로고    scopus 로고
    • Novel alternating least squares algorithm for nonnegative matrix and tensor factorizations
    • K.W. Wong, B.S.U. Mendis, and A. Bouzerdoum, eds. Lecture Notes in Computer Science, Vol. 6443, Springer, Berlin
    • A.-H. Phan, A. Cichocki, R. Zdunek, and, T. Dinh.,. Novel alternating least squares algorithm for nonnegative matrix and tensor factorizations, in Neural Information Processing. Theory and Algorithms, K.W. Wong, B.S.U. Mendis, and A. Bouzerdoum, eds., Lecture Notes in Computer Science, Vol. 6443, Springer, Berlin, 2010, pp. 262-269.
    • (2010) Neural Information Processing. Theory and Algorithms , pp. 262-269
    • Phan, A.-H.1    Cichocki, A.2    Zdunek, R.3    Dinh, T.4
  • 35
    • 84857722294 scopus 로고    scopus 로고
    • Projected Newton-type methods in machine learning
    • S. Sra, S. Nowozin, and S.J. Wright, eds. MIT Press, Cambridge, MA
    • M. Schmidt, D. Kim, and, S. Sra.,. Projected Newton-type methods in machine learning, in Optimization for Machine Learning, S. Sra, S. Nowozin, and S.J. Wright, eds., MIT Press, Cambridge, MA, 2011, pp. 305-330.
    • (2011) Optimization for Machine Learning , pp. 305-330
    • Schmidt, M.1    Kim, D.2    Sra, S.3
  • 37
    • 30144444694 scopus 로고    scopus 로고
    • A comparison of algorithms for fitting the PARAFAC model
    • G. Tomasi, and, R. Bro., A comparison of algorithms for fitting the PARAFAC model, Comput. Stat. Data Anal. 50 (2006), pp. 1700-1734. doi: 10.1016/j.csda.2004.11.013
    • (2006) Comput. Stat. Data Anal. , vol.50 , pp. 1700-1734
    • Tomasi, G.1    Bro, R.2
  • 38
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • S. Vavasis., On the complexity of nonnegative matrix factorization, SIAM J. Optim. 20 (2009), pp. 1364-1377. doi: 10.1137/070709967
    • (2009) SIAM J. Optim. , vol.20 , pp. 1364-1377
    • Vavasis, S.1
  • 39
    • 0034861343 scopus 로고    scopus 로고
    • Positive tensor factorization
    • M. Welling, and, M. Weber., Positive tensor factorization, Pattern Recognit. Lett. 22 (2001), pp. 1255-1261. doi: 10.1016/S0167-8655(01)00070-8
    • (2001) Pattern Recognit. Lett. , vol.22 , pp. 1255-1261
    • Welling, M.1    Weber, M.2
  • 41
    • 79960843936 scopus 로고    scopus 로고
    • Nonnegative tensor factorization as an alternative Csiszár-Tusnády procedure: Algorithms, convergence, probabilistic interpretations and novel probabilistic tensor latent variable analysis algorithms
    • S. Zafeiriou, and, M. Petrou., Nonnegative tensor factorization as an alternative Csiszár-Tusnády procedure: Algorithms, convergence, probabilistic interpretations and novel probabilistic tensor latent variable analysis algorithms, Data Min. Knowl. Discovery 22 (2011), pp. 419-466. doi: 10.1007/s10618-010-0196-4
    • (2011) Data Min. Knowl. Discovery , vol.22 , pp. 419-466
    • Zafeiriou, S.1    Petrou, M.2
  • 43
    • 34247173538 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with constrained second-order optimization
    • R. Zdunek, and, A. Cichocki., Nonnegative matrix factorization with constrained second-order optimization, Signal Process. 87 (2007), pp. 1904-1916. doi: 10.1016/j.sigpro.2007.01.024
    • (2007) Signal Process. , vol.87 , pp. 1904-1916
    • Zdunek, R.1    Cichocki, A.2
  • 44
    • 78651588472 scopus 로고    scopus 로고
    • Damped Newton based iterative non-negative matrix factorization for intelligent wood defects detection
    • Y. Zheng, and, Q. Zhang., Damped Newton based iterative non-negative matrix factorization for intelligent wood defects detection, J. Softw. 5 (2010), pp. 899-906. doi: 10.4304/jsw.5.8.899-906
    • (2010) J. Softw. , vol.5 , pp. 899-906
    • Zheng, Y.1    Zhang, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.