메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 2773-2832

Tensor decompositions for learning latent variable models

Author keywords

Latent variable models; Method of moments; Mixture models; Power method; Tensor decompositions; Topic models

Indexed keywords

LATENT VARIABLE MODELS; MIXTURE MODEL; POWER METHOD; TENSOR DECOMPOSITION; TOPIC MODEL;

EID: 84908049572     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1002)

References (88)
  • 2
    • 69949186291 scopus 로고    scopus 로고
    • Identifiability of parameters in latent structure models with many observed variables
    • E. S. Allman, C. Matias, and J. A. Rhodes. Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, 37(6 A):3099-3132, 2009.
    • (2009) The Annals of Statistics , vol.37 , Issue.6 , pp. 3099-3132
    • Allman, E.S.1    Matias, C.2    Rhodes, J.A.3
  • 7
    • 14544275956 scopus 로고    scopus 로고
    • Learning mixtures of separated nonspherical Gaussians
    • S. Arora and R. Kannan. Learning mixtures of separated nonspherical Gaussians. The Annals of Applied Probability, 15(1 A):69-92, 2005.
    • (2005) The Annals of Applied Probability , vol.15 , Issue.1 A , pp. 69-92
    • Arora, S.1    Kannan, R.2
  • 10
    • 76249122786 scopus 로고    scopus 로고
    • On exchangeable random variables and the statistics of large graphs and hypergraphs
    • T. Austin. On exchangeable random variables and the statistics of large graphs and hypergraphs. Probab. Survey, 5:80-145, 2008.
    • (2008) Probab. Survey , vol.5 , pp. 80-145
    • Austin, T.1
  • 11
    • 84867133071 scopus 로고    scopus 로고
    • Quadratic weighted automata: Spectral algorithm and likelihood maximization
    • R. Bailly. Quadratic weighted automata: Spectral algorithm and likelihood maximization. Journal of Machine Learning Research, 2011.
    • (2011) Journal of Machine Learning Research
    • Bailly, R.1
  • 12
    • 84877776210 scopus 로고    scopus 로고
    • Spectral learning of general weighted automata via constrained matrix completion
    • B. Balle and M. Mohri. Spectral learning of general weighted automata via constrained matrix completion. In Advances in Neural Information Processing Systems 25, 2012.
    • Advances in Neural Information Processing Systems , vol.25 , pp. 2012
    • Balle, B.1    Mohri, M.2
  • 20
    • 4344662525 scopus 로고
    • Perturbation of joint diagonalizers
    • Signal Department, Télécom Paris
    • J.-F. Cardoso. Perturbation of joint diagonalizers. Technical Report 94D027, Signal Department, Télécom Paris, 1994.
    • (1994) Technical Report
    • Cardoso, J.-F.1
  • 22
    • 0027812550 scopus 로고
    • Blind beamforming for non Gaussian signals
    • J.-F. Cardoso and A. Souloumiac. Blind beamforming for non Gaussian signals. IEE Proceedings-F, 140(6):362-370, 1993.
    • (1993) IEE Proceedings-F , vol.140 , Issue.6 , pp. 362-370
    • Cardoso, J.-F.1    Souloumiac, A.2
  • 23
    • 84869422694 scopus 로고    scopus 로고
    • The number of eigenvalues of a tensor
    • D. Cartwright and B. Sturmfels. The number of eigenvalues of a tensor. Linear Algebra Appl., 438(2):942-952, 2013.
    • (2013) Linear Algebra Appl. , vol.438 , Issue.2 , pp. 942-952
    • Cartwright, D.1    Sturmfels, B.2
  • 24
    • 0001434359 scopus 로고
    • Parallel proportional profiles and other principles for determining the choice of factors by rotation
    • R. B. Cattell. Parallel proportional profiles and other principles for determining the choice of factors by rotation. Psychometrika, 9(4):267-283, 1944.
    • (1944) Psychometrika , vol.9 , Issue.4 , pp. 267-283
    • Cattell, R.B.1
  • 25
    • 0030588055 scopus 로고    scopus 로고
    • Full reconstruction of Markov models on evolutionary trees: Identifiability and consistency
    • J. T. Chang. Full reconstruction of Markov models on evolutionary trees: Identifiability and consistency. Mathematical Biosciences, 137:51-73, 1996.
    • (1996) Mathematical Biosciences , vol.137 , pp. 51-73
    • Chang, J.T.1
  • 26
    • 84898062517 scopus 로고    scopus 로고
    • Learning mixtures of product distributions using correlations and independence
    • K. Chaudhuri and S. Rao. Learning mixtures of product distributions using correlations and independence. In Twenty-First Annual Conference on Learning Theory, pages 9-20, 2008.
    • (2008) Twenty-first Annual Conference on Learning Theory , pp. 9-20
    • Chaudhuri, K.1    Rao, S.2
  • 28
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287-314, 1994.
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 33
    • 33847128516 scopus 로고    scopus 로고
    • A probabilistic analysis of EM for mixtures of separated, spherical Gaussians
    • Feb
    • S. Dasgupta and L. Schulman. A probabilistic analysis of EM for mixtures of separated, spherical Gaussians. Journal of Machine Learning Research, 8(Feb):203-226, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 203-226
    • Dasgupta, S.1    Schulman, L.2
  • 34
  • 35
    • 0002308310 scopus 로고
    • Adaptive blind separation of independent sources: A deflation approach
    • N. Delfosse and P. Loubaton. Adaptive blind separation of independent sources: a deflation approach. Signal processing, 45(1):59-83, 1995.
    • (1995) Signal Processing , vol.45 , Issue.1 , pp. 59-83
    • Delfosse, N.1    Loubaton, P.2
  • 39
    • 66849115116 scopus 로고    scopus 로고
    • On the convergence of ICA algorithms with symmetric orthogonalization
    • A. T. Erdogan. On the convergence of ICA algorithms with symmetric orthogonalization. IEEE Transactions on Signal Processing, 57:2209-2221, 2009.
    • (2009) IEEE Transactions on Signal Processing , vol.57 , pp. 2209-2221
    • Erdogan, A.T.1
  • 42
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 2011.
    • (2011) SIAM Review , vol.53 , Issue.2
    • Halko, N.1    Martinsson, P.-G.2    Tropp, J.A.3
  • 44
    • 84891614753 scopus 로고    scopus 로고
    • Most tensor problems are NP-hard
    • November
    • C. J. Hillar and L.-H. Lim. Most tensor problems are NP-hard. J. ACM, 60(6):45:1-45:39, November 2013. ISSN 0004-5411. doi: 10.1145/2512329.
    • (2004) J. ACM , vol.60 , Issue.6 , pp. 451-4539
    • Hillar, C.J.1    Lim, L.-H.2
  • 45
    • 85162707890 scopus 로고
    • The expression of a tensor or a polyadic as a sum of products
    • F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics, 6:164-189, 1927a.
    • (1927) Journal of Mathematics and Physics , vol.6 , pp. 164-189
    • Hitchcock, F.L.1
  • 46
    • 85163188929 scopus 로고
    • Multiple invariants and generalized rank of a p-way matrix or tensor
    • F. L. Hitchcock. Multiple invariants and generalized rank of a p-way matrix or tensor. Journal of Mathematics and Physics, 7:39-79, 1927b.
    • (1927) Journal of Mathematics and Physics , vol.7 , pp. 39-79
    • Hitchcock, F.L.1
  • 47
  • 49
  • 50
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. Neural Networks, IEEE Transactions on, 10(3):626-634, 1999.
    • (1999) Neural Networks, IEEE Transactions On , vol.10 , Issue.3 , pp. 626-634
    • Hyvarinen, A.1
  • 51
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications. Neural Networks, 13(4-5):411-430, 2000.
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 52
    • 0034198996 scopus 로고    scopus 로고
    • Observable operator models for discrete stochastic time series
    • H. Jaeger. Observable operator models for discrete stochastic time series. Neural Comput., 12(6), 2000.
    • (2000) Neural Comput. , vol.12 , Issue.6
    • Jaeger, H.1
  • 54
    • 55249121402 scopus 로고    scopus 로고
    • The spectral method for general mixture models
    • R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture models. SIAM Journal on Computing, 38(3):1141-1156, 2008.
    • (2008) SIAM Journal on Computing , vol.38 , Issue.3 , pp. 1141-1156
    • Kannan, R.1    Salmasian, H.2    Vempala, S.3
  • 55
    • 0036018642 scopus 로고    scopus 로고
    • On the best rank-1 approximation of higher-order supersymmetric tensors
    • E. Kofidis and P. A. Regalia. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM Journal on Matrix Analysis and Applications, 23(3):863-884, 2002.
    • (2002) SIAM Journal on Matrix Analysis and Applications , vol.23 , Issue.3 , pp. 863-884
    • Kofidis, E.1    Regalia, P.A.2
  • 56
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51(3):455, 2009.
    • (2009) SIAM Review , vol.51 , Issue.3 , pp. 455
    • Kolda, T.G.1    Bader, B.W.2
  • 57
  • 58
    • 48749101457 scopus 로고
    • Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
    • J. B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and Appl., 18(2):95-138, 1977.
    • (1977) Linear Algebra and Appl. , vol.18 , Issue.2 , pp. 95-138
    • Kruskal, J.B.1
  • 67
    • 33746918412 scopus 로고    scopus 로고
    • Learning nonsingular phylogenies and hidden Markov models
    • E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden Markov models. Annals of Applied Probability, 16(2):583-614, 2006.
    • (2006) Annals of Applied Probability , vol.16 , Issue.2 , pp. 583-614
    • Mossel, E.1    Roch, S.2
  • 68
    • 64249149689 scopus 로고    scopus 로고
    • Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures
    • P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Journal of Cryptology, 22(2):139-160, 2009.
    • (2009) Journal of Cryptology , vol.22 , Issue.2 , pp. 139-160
    • Nguyen, P.Q.1    Regev, O.2
  • 73
  • 74
    • 27744582534 scopus 로고    scopus 로고
    • Eigenvalues of a real supersymmetric tensor
    • L. Qi. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation, 40(6):1302-1324, 2005.
    • (2005) Journal of Symbolic Computation , vol.40 , Issue.6 , pp. 1302-1324
    • Qi, L.1
  • 75
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2):195-239, 1984.
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 76
  • 77
    • 33144459988 scopus 로고    scopus 로고
    • A short proof that phylogenetic tree reconstruction by maximum likelihood is hard
    • S. Roch. A short proof that phylogenetic tree reconstruction by maximum likelihood is hard. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 3(1), 2006.
    • (2006) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.3 , Issue.1
    • Roch, S.1
  • 79
    • 50549180615 scopus 로고
    • On the definition of a family of automata
    • M. P. Schützenberger. On the definition of a family of automata. Inf. Control, 4:245-270, 1961.
    • (1961) Inf. Control , vol.4 , pp. 245-270
    • Schützenberger, M.P.1
  • 81
    • 70349684902 scopus 로고    scopus 로고
    • Smoothed analysis: An attempt to explain the behavior of algorithms in practice
    • D. A. Spielman and S. H. Teng. Smoothed analysis: An attempt to explain the behavior of algorithms in practice. Communications of the ACM, pages 76-84, 2009.
    • (2009) Communications of the ACM , pp. 76-84
    • Spielman, D.A.1    Teng, S.H.2
  • 82
    • 77955559162 scopus 로고    scopus 로고
    • Subtracting a best rank-1 approximation may increase tensor rank
    • A. Stegeman and P. Comon. Subtracting a best rank-1 approximation may increase tensor rank. Linear Algebra and Its Applications, 433:1276-1300, 2010.
    • (2010) Linear Algebra and its Applications , vol.433 , pp. 1276-1300
    • Stegeman, A.1    Comon, P.2
  • 83
    • 84874651466 scopus 로고    scopus 로고
    • Binary cumulant varieties
    • B. Sturmfels and P. Zwiernik. Binary cumulant varieties. Ann. Comb., (17): 229-250, 2013.
    • (2013) Ann. Comb. , Issue.17 , pp. 229-250
    • Sturmfels, B.1    Zwiernik, P.2
  • 84
    • 3042606899 scopus 로고    scopus 로고
    • A spectral algorithm for learning mixtures models
    • S. Vempala and G. Wang. A spectral algorithm for learning mixtures models. Journal of Computer and System Sciences, 68(4):841-860, 2004.
    • (2004) Journal of Computer and System Sciences , vol.68 , Issue.4 , pp. 841-860
    • Vempala, S.1    Wang, G.2
  • 85
    • 0002790288 scopus 로고
    • Perturbation bounds in connection with singular value decomposition
    • P. Wedin. Perturbation bounds in connection with singular value decomposition. BIT Numerical Mathematics, 12(1):99-111, 1972.
    • (1972) BIT Numerical Mathematics , vol.12 , Issue.1 , pp. 99-111
    • Wedin, P.1
  • 87
    • 26844550383 scopus 로고    scopus 로고
    • A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation
    • A. Ziehe, P. Laskov, G. Nolte, and K. R. Müller. A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation. Journal of Machine Learning Research, 5:777-800, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 777-800
    • Ziehe, A.1    Laskov, P.2    Nolte, G.3    Müller, K.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.