메뉴 건너뛰기




Volumn , Issue , 2012, Pages 355-364

Decomposition-by-normalization (DBN): Leveraging approximate functional dependencies for efficient tensor decomposition

Author keywords

tensor decomposition; tensor based relational data model

Indexed keywords

DATA LIFECYCLE; DECOMPOSITION APPROACH; FUNCTIONAL DEPENDENCY; MULTI-DIMENSIONAL DATA ANALYSIS; MULTIDIMENSIONAL DATA; RELATIONAL DATA MODELS; RELATIONAL OPERATIONS; TENSOR DECOMPOSITION;

EID: 84871037251     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2396761.2396809     Document Type: Conference Paper
Times cited : (8)

References (23)
  • 2
    • 79957597773 scopus 로고    scopus 로고
    • Nonnegative Tensor Factorization Accelerated Using GPGPU
    • National Laboratories
    • J. Antikainen et al. Nonnegative Tensor Factorization Accelerated Using GPGPU. In TPDS, 22(7):1135-1141, 2011. National Laboratories, 2006.
    • (2006) TPDS , vol.22 , Issue.7 , pp. 1135-1141
    • Antikainen, J.1
  • 4
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an N-way generalization of 'Eckart-Young' decomposition
    • J. D. Carroll and J. J. Chang. Analysis of individual differences in multidimensional scaling via an N-way generalization of 'Eckart-Young' decomposition. Psychometrika, 35:283-319, 1970.
    • (1970) Psychometrika , vol.35 , pp. 283-319
    • Carroll, J.D.1    Chang, J.J.2
  • 5
    • 84871102436 scopus 로고
    • Further normalization of the data base relational model
    • E. F. Codd. Further normalization of the data base relational model. In Rustin, 1972.
    • (1972) Rustin
    • Codd, E.F.1
  • 8
    • 0345201769 scopus 로고    scopus 로고
    • TANE: An efficient algorithm for discovering functional and approximate dependencies
    • Y. Huhtala et al. TANE: An efficient algorithm for discovering functional and approximate dependencies. Comput. J., 42 (2):100-111, 1999.
    • (1999) Comput. J. , vol.42 , Issue.2 , pp. 100-111
    • Huhtala, Y.1
  • 9
    • 3142708793 scopus 로고    scopus 로고
    • CORDS: Automatic discovery of correlations and soft functional dependencies
    • I. F. Ilyas et al. CORDS: Automatic discovery of correlations and soft functional dependencies. In SIGMOD, 647-658, 2004.
    • (2004) SIGMOD , pp. 647-658
    • Ilyas, I.F.1
  • 10
    • 83055166026 scopus 로고    scopus 로고
    • Approximate tensor decomposition within a tensor-relational algebraic framework
    • M. Kim and K. S. Candan. Approximate tensor decomposition within a tensor-relational algebraic framework. In CIKM, 2011.
    • (2011) CIKM
    • Kim, M.1    Candan, K.S.2
  • 11
    • 33646724672 scopus 로고    scopus 로고
    • Higher-order web link analysis using multilinear algebra
    • T. G. Kolda et al. Higher-order web link analysis using multilinear algebra. In ICDM, 2005.
    • (2005) ICDM
    • Kolda, T.G.1
  • 12
    • 67049173946 scopus 로고    scopus 로고
    • Scalable tensor decompositions for multi-aspect data mining
    • T. G. Kolda and J. Sun. Scalable tensor decompositions for multi-aspect data mining. In ICDM, 363-372, 2008.
    • (2008) ICDM , pp. 363-372
    • Kolda, T.G.1    Sun, J.2
  • 13
    • 0000873342 scopus 로고    scopus 로고
    • Efficient discovery of functional dependencies and armstrong relations
    • S. Lopes et al. Efficient discovery of functional dependencies and armstrong relations. In EDBT, 2000.
    • (2000) EDBT
    • Lopes, S.1
  • 14
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming. SIAM News, 23(5):1-18, 1990.
    • (1990) SIAM News , vol.23 , Issue.5 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 15
    • 0000300428 scopus 로고
    • On the complexity of inferring functional dependencies
    • H. Mannila and K. Räihä. On the complexity of inferring functional dependencies. Discrete Appl. Math., 40:237-243, 1992.
    • (1992) Discrete Appl. Math. , vol.40 , pp. 237-243
    • Mannila, H.1    Räihä, K.2
  • 16
    • 27144468394 scopus 로고    scopus 로고
    • Levelwise search and borders of theories in knowledge discovery
    • H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Min. Knowl. Discov., 1(3):259-289, 1997.
    • (1997) Data Min. Knowl. Discov. , vol.1 , Issue.3 , pp. 259-289
    • Mannila, H.1    Toivonen, H.2
  • 17
    • 79955992666 scopus 로고    scopus 로고
    • PARAFAC algorithms for large-scale problems
    • A. H. Phan and A. Cichocki. PARAFAC algorithms for large-scale problems. Neurocomputing, 74(11):1970-1984, 2011.
    • (2011) Neurocomputing , vol.74 , Issue.11 , pp. 1970-1984
    • Phan, A.H.1    Cichocki, A.2
  • 19
    • 0031176702 scopus 로고    scopus 로고
    • A simple min-cut algorithm
    • M. Stoer and F. Wagner. A simple min-cut algorithm. J. ACM, 44 (4):585-59, 1997.
    • (1997) J. ACM , vol.44 , Issue.4 , pp. 585-659
    • Stoer, M.1    Wagner, F.2
  • 20
    • 79951751250 scopus 로고    scopus 로고
    • Mach: Fast randomized tensor decompositions
    • C. E. Tsourakakis. Mach: Fast randomized tensor decompositions. In SDM, 2010.
    • (2010) SDM
    • Tsourakakis, C.E.1
  • 21
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 1966.
    • (1966) Psychometrika , vol.31
    • Tucker, L.R.1
  • 22
    • 0001730443 scopus 로고    scopus 로고
    • FastFDs: A heuristic-driven, depth-first algorithm for mining functional dependencies from relation instances
    • C. M. Wyss et al. FastFDs: A heuristic-driven, depth-first algorithm for mining functional dependencies from relation instances. In DaWak, 2001.
    • (2001) DaWak
    • Wyss, C.M.1
  • 23
    • 84871093846 scopus 로고    scopus 로고
    • A parallel nonnegative tensor factorization algorithm for mining global climate data
    • Q. Zhang et al. A parallel nonnegative tensor factorization algorithm for mining global climate data. ICCS, 2009.
    • (2009) ICCS
    • Zhang, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.