-
1
-
-
85026956830
-
-
Apache Hadoop. http://hadoop. apache.org/, 2012.
-
(2012)
-
-
Apache Hadoop1
-
2
-
-
84886450426
-
-
The matlab cmtf toolbox, http://www.models.life. ku.dk/joda/CMTF-Toolbox, 2013.
-
(2013)
The Matlab Cmtf Toolbox
-
-
-
4
-
-
79952446835
-
Scalable tensor factorizations with missing data
-
Evrim Acar, Daniel M. Dunlavy, Tamara G. Kolda, and Morten Mørup. Scalable tensor factorizations with missing data. In SDM, pages 701-712, 2010.
-
(2010)
SDM
, pp. 701-712
-
-
Acar, E.1
Dunlavy, D.M.2
Kolda, T.G.3
Mørup, M.4
-
7
-
-
33947180792
-
Stochastic learning
-
Olivier Bousquet and Ulrike von Luxburg, editors, Lecture Notes in Artificial Intelligence, LNAI 3176, Springer Verlag, Berlin
-
Léon Bottou. Stochastic learning. In Olivier Bousquet and Ulrike von Luxburg, editors, Advanced Lectures on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI 3176, pages 146-168. Springer Verlag, Berlin, 2004.
-
(2004)
Advanced Lectures on Machine Learning
, pp. 146-168
-
-
Bottou, L.1
-
8
-
-
85030321143
-
Mapreduce: Simplified data processing on large clusters
-
December
-
Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. OSDI, December 2004.
-
(2004)
OSDI
-
-
Dean, J.1
Ghemawat, S.2
-
9
-
-
80052668032
-
Large-scale matrix factorization with distributed stochastic gradient descent
-
New York, NY, USA, ACM
-
Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In ACM SIGKDD, pages 69-77, New York, NY, USA, 2011. ACM.
-
(2011)
ACM SIGKDD
, pp. 69-77
-
-
Gemulla, R.1
Nijkamp, E.2
Haas, P.J.3
Sismanis, Y.4
-
11
-
-
84866052446
-
Gigatensor: Scaling tensor analysis up by 100 timesalgorithms and discoveries
-
ACM
-
U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: scaling tensor analysis up by 100 timesalgorithms and discoveries. In ACM SIGKDD, pages 316-324. ACM, 2012.
-
(2012)
ACM SIGKDD
, pp. 316-324
-
-
Kang, U.1
Papalexakis, E.2
Harpale, A.3
Faloutsos, C.4
-
12
-
-
68649096448
-
Tensor decompositions and applications
-
T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51(3), 2009.
-
(2009)
SIAM Review
, vol.51
, Issue.3
-
-
Kolda, T.G.1
Bader, B.W.2
-
14
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
Daniel D Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Sebastian Seung, H.2
-
15
-
-
84872112858
-
From k-means to higher-way co-clustering: Multilinear decomposition with sparse latent factors
-
E. E. Papalexakis, N. D. Sidiropoulos, and R. Bro. From k-means to higher-way co-clustering: Multilinear decomposition with sparse latent factors. IEEE TSP, 61(2):493-506, 2013.
-
(2013)
IEEE TSP
, vol.61
, Issue.2
, pp. 493-506
-
-
Papalexakis, E.E.1
Sidiropoulos, N.D.2
Bro, R.3
-
17
-
-
65449121541
-
Relational learning via collective matrix factorization
-
New York, NY, USA, ACM
-
Ajit P. Singh and Geoffrey J. Gordon. Relational learning via collective matrix factorization. In ACM SIGKDD, pages 650-658, New York, NY, USA, 2008. ACM.
-
(2008)
ACM SIGKDD
, pp. 650-658
-
-
Singh, A.P.1
Gordon, G.J.2
-
18
-
-
33749583360
-
Beyond streams and graphs: Dynamic tensor analysis
-
ACM
-
Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs: dynamic tensor analysis. In ACM SIGKDD, pages 374-383. ACM, 2006.
-
(2006)
ACM SIGKDD
, pp. 374-383
-
-
Sun, J.1
Tao, D.2
Faloutsos, C.3
-
20
-
-
84858034120
-
Alternating Least-Squares for Low-Rank Matrix Reconstruction
-
April
-
D. Zachariah, M. Sundin, M. Jansson, and S. Chatterjee. Alternating Least-Squares for Low-Rank Matrix Reconstruction. IEEE Signal Processing Letters, 19:231-234, April 2012.
-
(2012)
IEEE Signal Processing Letters
, vol.19
, pp. 231-234
-
-
Zachariah, D.1
Sundin, M.2
Jansson, M.3
Chatterjee, S.4
-
21
-
-
85161967549
-
Parallelized stochastic gradient descent
-
Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic gradient descent. In NIPS, pages 2595-2603, 2010.
-
(2010)
NIPS
, pp. 2595-2603
-
-
Zinkevich, M.1
Weimer, M.2
Li, L.3
Smola, A.J.4
|