메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 109-117

FlexiFaCT: Scalable flexible factorization of coupled tensors on Hadoop

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; FACTORIZATION; SCALABILITY; STOCHASTIC SYSTEMS; TENSORS;

EID: 84946062590     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611973440.13     Document Type: Conference Paper
Times cited : (98)

References (21)
  • 1
    • 85026956830 scopus 로고    scopus 로고
    • Apache Hadoop. http://hadoop. apache.org/, 2012.
    • (2012)
    • Apache Hadoop1
  • 2
    • 84886450426 scopus 로고    scopus 로고
    • The matlab cmtf toolbox, http://www.models.life. ku.dk/joda/CMTF-Toolbox, 2013.
    • (2013) The Matlab Cmtf Toolbox
  • 4
    • 79952446835 scopus 로고    scopus 로고
    • Scalable tensor factorizations with missing data
    • Evrim Acar, Daniel M. Dunlavy, Tamara G. Kolda, and Morten Mørup. Scalable tensor factorizations with missing data. In SDM, pages 701-712, 2010.
    • (2010) SDM , pp. 701-712
    • Acar, E.1    Dunlavy, D.M.2    Kolda, T.G.3    Mørup, M.4
  • 7
    • 33947180792 scopus 로고    scopus 로고
    • Stochastic learning
    • Olivier Bousquet and Ulrike von Luxburg, editors, Lecture Notes in Artificial Intelligence, LNAI 3176, Springer Verlag, Berlin
    • Léon Bottou. Stochastic learning. In Olivier Bousquet and Ulrike von Luxburg, editors, Advanced Lectures on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI 3176, pages 146-168. Springer Verlag, Berlin, 2004.
    • (2004) Advanced Lectures on Machine Learning , pp. 146-168
    • Bottou, L.1
  • 8
    • 85030321143 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • December
    • Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. OSDI, December 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 9
    • 80052668032 scopus 로고    scopus 로고
    • Large-scale matrix factorization with distributed stochastic gradient descent
    • New York, NY, USA, ACM
    • Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In ACM SIGKDD, pages 69-77, New York, NY, USA, 2011. ACM.
    • (2011) ACM SIGKDD , pp. 69-77
    • Gemulla, R.1    Nijkamp, E.2    Haas, P.J.3    Sismanis, Y.4
  • 11
    • 84866052446 scopus 로고    scopus 로고
    • Gigatensor: Scaling tensor analysis up by 100 timesalgorithms and discoveries
    • ACM
    • U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: scaling tensor analysis up by 100 timesalgorithms and discoveries. In ACM SIGKDD, pages 316-324. ACM, 2012.
    • (2012) ACM SIGKDD , pp. 316-324
    • Kang, U.1    Papalexakis, E.2    Harpale, A.3    Faloutsos, C.4
  • 12
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51(3), 2009.
    • (2009) SIAM Review , vol.51 , Issue.3
    • Kolda, T.G.1    Bader, B.W.2
  • 14
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Daniel D Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Sebastian Seung, H.2
  • 15
    • 84872112858 scopus 로고    scopus 로고
    • From k-means to higher-way co-clustering: Multilinear decomposition with sparse latent factors
    • E. E. Papalexakis, N. D. Sidiropoulos, and R. Bro. From k-means to higher-way co-clustering: Multilinear decomposition with sparse latent factors. IEEE TSP, 61(2):493-506, 2013.
    • (2013) IEEE TSP , vol.61 , Issue.2 , pp. 493-506
    • Papalexakis, E.E.1    Sidiropoulos, N.D.2    Bro, R.3
  • 17
    • 65449121541 scopus 로고    scopus 로고
    • Relational learning via collective matrix factorization
    • New York, NY, USA, ACM
    • Ajit P. Singh and Geoffrey J. Gordon. Relational learning via collective matrix factorization. In ACM SIGKDD, pages 650-658, New York, NY, USA, 2008. ACM.
    • (2008) ACM SIGKDD , pp. 650-658
    • Singh, A.P.1    Gordon, G.J.2
  • 18
    • 33749583360 scopus 로고    scopus 로고
    • Beyond streams and graphs: Dynamic tensor analysis
    • ACM
    • Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs: dynamic tensor analysis. In ACM SIGKDD, pages 374-383. ACM, 2006.
    • (2006) ACM SIGKDD , pp. 374-383
    • Sun, J.1    Tao, D.2    Faloutsos, C.3
  • 21
    • 85161967549 scopus 로고    scopus 로고
    • Parallelized stochastic gradient descent
    • Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic gradient descent. In NIPS, pages 2595-2603, 2010.
    • (2010) NIPS , pp. 2595-2603
    • Zinkevich, M.1    Weimer, M.2    Li, L.3    Smola, A.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.