메뉴 건너뛰기




Volumn 34, Issue 3, 2012, Pages 521-532

Maximum margin bayesian network classifiers

Author keywords

Bayesian network classifier; convex relaxation; discriminative classifiers; discriminative learning; large margin training; missing features

Indexed keywords

BAYESIAN NETWORK CLASSIFIERS; CONVEX RELAXATION; DISCRIMINATIVE CLASSIFIERS; DISCRIMINATIVE LEARNING; MISSING FEATURES;

EID: 84856204760     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2011.149     Document Type: Article
Times cited : (57)

References (43)
  • 5
    • 21244467519 scopus 로고    scopus 로고
    • On discriminative Bayesian network classifiers and logistic regression
    • T. Roos, H. Wettig, P. Grü nwald, P. Myllymäki, and H. Tirri, "On Discriminative Bayesian Network Classifiers and Logistic Regression," Machine Learning, vol. 59, pp. 267-296, 2005. (Pubitemid 40890480)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 267-296
    • Roos, T.1    Wettig, H.2    Grunwald, P.3    Myllymaki, P.4    Tirri, H.5
  • 6
    • 34547522370 scopus 로고    scopus 로고
    • Comparison of large margin training to other discriminative methods for phonetic recognition by hidden markov models
    • F. Sha and L. Saul, "Comparison of Large Margin Training to Other Discriminative Methods for Phonetic Recognition by Hidden Markov Models," Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, pp. 313-316, 2007.
    • (2007) Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing , pp. 313-316
    • Sha, F.1    Saul, L.2
  • 10
    • 21244444642 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
    • DOI 10.1007/s10994-005-0469-0
    • R. Greiner, X. Su, S. Shen, and W. Zhou, "Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers," Machine Learning, vol. 59, pp. 297-322, 2005. (Pubitemid 40890481)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 297-322
    • Greinemr, R.1    Su, X.2    Shen, B.3    Zhou, W.4
  • 11
    • 0025952278 scopus 로고
    • An inequality for rational functions with applications to some statistical estimation problems
    • Jan.
    • O. Gopalakrishnan, D. Kanevsky, A. Nàdas, and D. Nahamoo, "An Inequality for Rational Functions with Applications to Some Statistical Estimation Problems," IEEE Trans. Information Theory, vol. 37, no. 1, pp. 107-113, Jan. 1991.
    • (1991) IEEE Trans. Information Theory , vol.37 , Issue.1 , pp. 107-113
    • Gopalakrishnan, O.1    Kanevsky, D.2    Nàdas, A.3    Nahamoo, D.4
  • 12
    • 70349961718 scopus 로고    scopus 로고
    • On discriminative parameter learning of bayesian network classifiers
    • F. Pernkopf and M. Wohlmayr, "On Discriminative Parameter Learning of Bayesian Network Classifiers," Proc. European Conf. Machine Learning, pp. 221-237, 2009.
    • (2009) Proc. European Conf. Machine Learning , pp. 221-237
    • Pernkopf, F.1    Wohlmayr, M.2
  • 13
    • 0036461035 scopus 로고    scopus 로고
    • Large scale discriminative training of hidden markov models for speech recognition
    • P. Woodland and D. Povey, "Large Scale Discriminative Training of Hidden Markov Models for Speech Recognition," Computer Speech and Language, vol. 16, pp. 25-47, 2002.
    • (2002) Computer Speech and Language , vol.16 , pp. 25-47
    • Woodland, P.1    Povey, D.2
  • 14
    • 0035342391 scopus 로고    scopus 로고
    • Comparison of discriminative training criteria and optimization methods for speech recognition
    • DOI 10.1016/S0167-6393(00)00035-2, PII S0167639300000352
    • R. Schlü ter, W. Macherey, M.B., and H. Ney, "Comparison of Discriminative Training Criteria and Optimization Methods for Speech Recognition," Speech Comm., vol. 34, pp. 287-310, 2001. (Pubitemid 32284868)
    • (2001) Speech Communication , vol.34 , Issue.3 , pp. 287-310
    • Schluter, R.1    Macherey, W.2    Muller, B.3    Ney, H.4
  • 15
    • 84856172426 scopus 로고    scopus 로고
    • technical report, Inst. Signal Processing and Speech Comm., Graz Univ. of Technology
    • F. Pernkopf and M. Wohlmayr, "Maximum Margin Bayesian Network Classifiers," technical report, Inst. Signal Processing and Speech Comm., Graz Univ. of Technology, 2010.
    • (2010) Maximum Margin Bayesian Network Classifiers
    • Pernkopf, F.1    Wohlmayr, M.2
  • 16
    • 77958049454 scopus 로고    scopus 로고
    • Large margin learning of bayesian classifiers based on gaussian mixture models
    • F. Pernkopf and M. Wohlmayr, "Large Margin Learning of Bayesian Classifiers Based on Gaussian Mixture Models," Proc. European Conf. Machine Learning, pp. 50-66, 2010.
    • (2010) Proc. European Conf. Machine Learning , pp. 50-66
    • Pernkopf, F.1    Wohlmayr, M.2
  • 18
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-Based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-Based Learning Applied to Document Recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 20
    • 77956911311 scopus 로고    scopus 로고
    • Efficient heuristics for discriminative structure learning of bayesian network classifiers
    • F. Pernkopf and J. Bilmes, "Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers," J. Machine Learning Research, vol. 11, pp. 2323-2360, 2010.
    • (2010) J. Machine Learning Research , vol.11 , pp. 2323-2360
    • Pernkopf, F.1    Bilmes, J.2
  • 21
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian Network Classifiers," Machine Learning, vol. 29, pp. 131-163, 1997. (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 22
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani, "On the Optimality of the Simple Bayesian Classifier under Zero-One Loss," Machine Learning, vol. 29, nos. 2/3, pp. 103-130, 1997. (Pubitemid 127510035)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 26
    • 21244467165 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs
    • S. Acid, L. de Campos, and J. Castellano, "Learning Bayesian Network Classifiers: Searching in a Space of Partially Directed Acyclic Graphs," Machine Learning, vol. 59, pp. 213-235, 2005. (Pubitemid 40890478)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 213-235
    • Acid, S.1    De Campos, L.M.2    Castellano, J.G.3
  • 28
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • P. Huber, "Robust Estimation of a Location Parameter," Annals of Statistics, vol. 53, pp. 73-101, 1964.
    • (1964) Annals of Statistics , vol.53 , pp. 73-101
    • Huber, P.1
  • 29
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • O. Chapelle, "Training a Support Vector Machine in the Primal," Neural Computation, vol. 19, no. 5, pp. 1155-1178, 2007.
    • (2007) Neural Computation , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 32
    • 0002610991 scopus 로고    scopus 로고
    • Learning augmented bayesian classifiers: A comparison of distribution-based and classification-based approaches
    • E. Keogh and M. Pazzani, "Learning Augmented Bayesian Classifiers: A Comparison of Distribution-Based and Classification-Based Approaches," Proc. Workshop Artificial Intelligence and Statistics, pp. 225-230, 1999.
    • (1999) Proc. Workshop Artificial Intelligence and Statistics , pp. 225-230
    • Keogh, E.1    Pazzani, M.2
  • 33
    • 4644329616 scopus 로고    scopus 로고
    • Bayesian network classifiers versus selective k-NN classifier
    • F. Pernkopf, "Bayesian Network Classifiers versus Selective k-NN Classifier," Pattern Recognition, vol. 38, no. 3, pp. 1-10, 2005.
    • (2005) Pattern Recognition , vol.38 , Issue.3 , pp. 1-10
    • Pernkopf, F.1
  • 38
    • 0002593344 scopus 로고
    • Multi-Interval discretizaton of continuous-valued attributes for classification learning
    • U. Fayyad and K. Irani, "Multi-Interval Discretizaton of Continuous-Valued Attributes for Classification Learning," Proc. Joint Conf. Artificial Intelligence, pp. 1022-1027, 1993.
    • (1993) Proc. Joint Conf. Artificial Intelligence , pp. 1022-1027
    • Fayyad, U.1    Irani, K.2
  • 39
    • 70349960969 scopus 로고    scopus 로고
    • Broad phonetic classification using discriminative bayesian networks
    • F. Pernkopf, T. Van Pham, and J. Bilmes, "Broad Phonetic Classification Using Discriminative Bayesian Networks," Speech Comm., vol. 143, no. 1, pp. 123-138, 2008.
    • (2008) Speech Comm. , vol.143 , Issue.1 , pp. 123-138
    • Pernkopf, F.1    Van Pham, T.2    Bilmes, J.3
  • 40
    • 29144523061 scopus 로고    scopus 로고
    • On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
    • DOI 10.1007/s10107-004-0559-y
    • A. Wächter and L. Biegler, "On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming," Math. Programming, vol. 106, pp. 25-57, 2006. (Pubitemid 41813168)
    • (2006) Mathematical Programming , vol.106 , Issue.1 , pp. 25-57
    • Wachter, A.1    Biegler, L.T.2
  • 41
    • 58949100898 scopus 로고    scopus 로고
    • Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization
    • L. Biegler and V. Zavala, "Large-Scale Nonlinear Programming Using IPOPT: An Integrating Framework for Enterprise-Wide Dynamic Optimization," Computers & Chemical Eng., vol. 33, no. 3, pp. 575-582, 2009.
    • (2009) Computers & Chemical Eng. , vol.33 , Issue.3 , pp. 575-582
    • Biegler, L.1    Zavala, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.