-
1
-
-
55649114611
-
Maximum margin bayesian networks
-
Y. Guo, D. Wilkinson, and D. Schuurmans, "Maximum Margin Bayesian Networks," Proc. Int'l Conf. Uncertainty in Artificial Intelligence, pp. 233-242, 2005.
-
(2005)
Proc. Int'l Conf. Uncertainty in Artificial Intelligence
, pp. 233-242
-
-
Guo, Y.1
Wilkinson, D.2
Schuurmans, D.3
-
4
-
-
21244460734
-
When discriminative learning of bayesian network parameters is easy
-
H. Wettig, P. Grü nwald, T. Roos, P. Myllymäki, and H. Tirri, "When Discriminative Learning of Bayesian Network Parameters Is Easy," Proc. Int'l Joint Conf. Artificial Intelligence, pp. 491-496, 2003.
-
(2003)
Proc. Int'l Joint Conf. Artificial Intelligence
, pp. 491-496
-
-
Wettig, H.1
Grünwald, P.2
Roos, T.3
Myllymäki, P.4
Tirri, H.5
-
5
-
-
21244467519
-
On discriminative Bayesian network classifiers and logistic regression
-
T. Roos, H. Wettig, P. Grü nwald, P. Myllymäki, and H. Tirri, "On Discriminative Bayesian Network Classifiers and Logistic Regression," Machine Learning, vol. 59, pp. 267-296, 2005. (Pubitemid 40890480)
-
(2005)
Machine Learning
, vol.59
, Issue.3
, pp. 267-296
-
-
Roos, T.1
Wettig, H.2
Grunwald, P.3
Myllymaki, P.4
Tirri, H.5
-
6
-
-
34547522370
-
Comparison of large margin training to other discriminative methods for phonetic recognition by hidden markov models
-
F. Sha and L. Saul, "Comparison of Large Margin Training to Other Discriminative Methods for Phonetic Recognition by Hidden Markov Models," Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, pp. 313-316, 2007.
-
(2007)
Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing
, pp. 313-316
-
-
Sha, F.1
Saul, L.2
-
7
-
-
56449091292
-
Modified MMI/MPE: A direct evaluation of the margin in speech recognition
-
G. Heigold, T. Deselaers, R. Schlü ter, and H. Ney, "Modified MMI/MPE: A Direct Evaluation of the Margin in Speech Recognition," Proc. Int'l Conf. Machine Learning, pp. 384-391, 2008.
-
(2008)
Proc. Int'l Conf. Machine Learning
, pp. 384-391
-
-
Heigold, G.1
Deselaers, T.2
Schlüter, R.3
Ney, H.4
-
8
-
-
33747105621
-
Trading convexity for scalability
-
R. Collobert, F. Siz, J. Weston, and L. Bottou, "Trading Convexity for Scalability," Proc. Int'l Conf. Machine Learning, pp. 201-208, 2006.
-
(2006)
Proc. Int'l Conf. Machine Learning
, pp. 201-208
-
-
Collobert, R.1
Siz, F.2
Weston, J.3
Bottou, L.4
-
10
-
-
21244444642
-
Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
-
DOI 10.1007/s10994-005-0469-0
-
R. Greiner, X. Su, S. Shen, and W. Zhou, "Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers," Machine Learning, vol. 59, pp. 297-322, 2005. (Pubitemid 40890481)
-
(2005)
Machine Learning
, vol.59
, Issue.3
, pp. 297-322
-
-
Greinemr, R.1
Su, X.2
Shen, B.3
Zhou, W.4
-
11
-
-
0025952278
-
An inequality for rational functions with applications to some statistical estimation problems
-
Jan.
-
O. Gopalakrishnan, D. Kanevsky, A. Nàdas, and D. Nahamoo, "An Inequality for Rational Functions with Applications to Some Statistical Estimation Problems," IEEE Trans. Information Theory, vol. 37, no. 1, pp. 107-113, Jan. 1991.
-
(1991)
IEEE Trans. Information Theory
, vol.37
, Issue.1
, pp. 107-113
-
-
Gopalakrishnan, O.1
Kanevsky, D.2
Nàdas, A.3
Nahamoo, D.4
-
12
-
-
70349961718
-
On discriminative parameter learning of bayesian network classifiers
-
F. Pernkopf and M. Wohlmayr, "On Discriminative Parameter Learning of Bayesian Network Classifiers," Proc. European Conf. Machine Learning, pp. 221-237, 2009.
-
(2009)
Proc. European Conf. Machine Learning
, pp. 221-237
-
-
Pernkopf, F.1
Wohlmayr, M.2
-
13
-
-
0036461035
-
Large scale discriminative training of hidden markov models for speech recognition
-
P. Woodland and D. Povey, "Large Scale Discriminative Training of Hidden Markov Models for Speech Recognition," Computer Speech and Language, vol. 16, pp. 25-47, 2002.
-
(2002)
Computer Speech and Language
, vol.16
, pp. 25-47
-
-
Woodland, P.1
Povey, D.2
-
14
-
-
0035342391
-
Comparison of discriminative training criteria and optimization methods for speech recognition
-
DOI 10.1016/S0167-6393(00)00035-2, PII S0167639300000352
-
R. Schlü ter, W. Macherey, M.B., and H. Ney, "Comparison of Discriminative Training Criteria and Optimization Methods for Speech Recognition," Speech Comm., vol. 34, pp. 287-310, 2001. (Pubitemid 32284868)
-
(2001)
Speech Communication
, vol.34
, Issue.3
, pp. 287-310
-
-
Schluter, R.1
Macherey, W.2
Muller, B.3
Ney, H.4
-
16
-
-
77958049454
-
Large margin learning of bayesian classifiers based on gaussian mixture models
-
F. Pernkopf and M. Wohlmayr, "Large Margin Learning of Bayesian Classifiers Based on Gaussian Mixture Models," Proc. European Conf. Machine Learning, pp. 50-66, 2010.
-
(2010)
Proc. European Conf. Machine Learning
, pp. 50-66
-
-
Pernkopf, F.1
Wohlmayr, M.2
-
18
-
-
0032203257
-
Gradient-Based learning applied to document recognition
-
Nov.
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-Based Learning Applied to Document Recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
20
-
-
77956911311
-
Efficient heuristics for discriminative structure learning of bayesian network classifiers
-
F. Pernkopf and J. Bilmes, "Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers," J. Machine Learning Research, vol. 11, pp. 2323-2360, 2010.
-
(2010)
J. Machine Learning Research
, vol.11
, pp. 2323-2360
-
-
Pernkopf, F.1
Bilmes, J.2
-
21
-
-
0031276011
-
Bayesian network classifiers
-
N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian Network Classifiers," Machine Learning, vol. 29, pp. 131-163, 1997. (Pubitemid 127510036)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
22
-
-
0031269184
-
On the optimality of the simple bayesian classifier under zero-one loss
-
P. Domingos and M. Pazzani, "On the Optimality of the Simple Bayesian Classifier under Zero-One Loss," Machine Learning, vol. 29, nos. 2/3, pp. 103-130, 1997. (Pubitemid 127510035)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
26
-
-
21244467165
-
Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs
-
S. Acid, L. de Campos, and J. Castellano, "Learning Bayesian Network Classifiers: Searching in a Space of Partially Directed Acyclic Graphs," Machine Learning, vol. 59, pp. 213-235, 2005. (Pubitemid 40890478)
-
(2005)
Machine Learning
, vol.59
, Issue.3
, pp. 213-235
-
-
Acid, S.1
De Campos, L.M.2
Castellano, J.G.3
-
27
-
-
46249099027
-
-
MIT Press
-
B. Schölkopf and A. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.2
-
28
-
-
0003157339
-
Robust estimation of a location parameter
-
P. Huber, "Robust Estimation of a Location Parameter," Annals of Statistics, vol. 53, pp. 73-101, 1964.
-
(1964)
Annals of Statistics
, vol.53
, pp. 73-101
-
-
Huber, P.1
-
29
-
-
34247849152
-
Training a support vector machine in the primal
-
O. Chapelle, "Training a Support Vector Machine in the Primal," Neural Computation, vol. 19, no. 5, pp. 1155-1178, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.5
, pp. 1155-1178
-
-
Chapelle, O.1
-
32
-
-
0002610991
-
Learning augmented bayesian classifiers: A comparison of distribution-based and classification-based approaches
-
E. Keogh and M. Pazzani, "Learning Augmented Bayesian Classifiers: A Comparison of Distribution-Based and Classification-Based Approaches," Proc. Workshop Artificial Intelligence and Statistics, pp. 225-230, 1999.
-
(1999)
Proc. Workshop Artificial Intelligence and Statistics
, pp. 225-230
-
-
Keogh, E.1
Pazzani, M.2
-
33
-
-
4644329616
-
Bayesian network classifiers versus selective k-NN classifier
-
F. Pernkopf, "Bayesian Network Classifiers versus Selective k-NN Classifier," Pattern Recognition, vol. 38, no. 3, pp. 1-10, 2005.
-
(2005)
Pattern Recognition
, vol.38
, Issue.3
, pp. 1-10
-
-
Pernkopf, F.1
-
34
-
-
14344256569
-
Learning Bayesian Network classifiers by maximizing conditional likelihood
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
D. Grossman and P. Domingos, "Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood," Proc. Int'l Conf. Machine Lerning, pp. 361-368, 2004. (Pubitemid 40290829)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 361-368
-
-
Grossman, D.1
Domingos, P.2
-
35
-
-
33645505792
-
Convexity, classification, and risk bounds
-
DOI 10.1198/016214505000000907
-
P. Bartlett, M. Jordan, and J. McAuliffe, "Convexity, Classification, and Risk Bounds," J. Am. Statistical Assoc., vol. 101, no. 473, pp. 138-156, 2006. (Pubitemid 43500031)
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
38
-
-
0002593344
-
Multi-Interval discretizaton of continuous-valued attributes for classification learning
-
U. Fayyad and K. Irani, "Multi-Interval Discretizaton of Continuous-Valued Attributes for Classification Learning," Proc. Joint Conf. Artificial Intelligence, pp. 1022-1027, 1993.
-
(1993)
Proc. Joint Conf. Artificial Intelligence
, pp. 1022-1027
-
-
Fayyad, U.1
Irani, K.2
-
39
-
-
70349960969
-
Broad phonetic classification using discriminative bayesian networks
-
F. Pernkopf, T. Van Pham, and J. Bilmes, "Broad Phonetic Classification Using Discriminative Bayesian Networks," Speech Comm., vol. 143, no. 1, pp. 123-138, 2008.
-
(2008)
Speech Comm.
, vol.143
, Issue.1
, pp. 123-138
-
-
Pernkopf, F.1
Van Pham, T.2
Bilmes, J.3
-
40
-
-
29144523061
-
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
-
DOI 10.1007/s10107-004-0559-y
-
A. Wächter and L. Biegler, "On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming," Math. Programming, vol. 106, pp. 25-57, 2006. (Pubitemid 41813168)
-
(2006)
Mathematical Programming
, vol.106
, Issue.1
, pp. 25-57
-
-
Wachter, A.1
Biegler, L.T.2
-
41
-
-
58949100898
-
Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization
-
L. Biegler and V. Zavala, "Large-Scale Nonlinear Programming Using IPOPT: An Integrating Framework for Enterprise-Wide Dynamic Optimization," Computers & Chemical Eng., vol. 33, no. 3, pp. 575-582, 2009.
-
(2009)
Computers & Chemical Eng.
, vol.33
, Issue.3
, pp. 575-582
-
-
Biegler, L.1
Zavala, V.2
-
42
-
-
20744447890
-
MUMPS: A general purpose distributed memory sparse solver
-
P. Amestoy, I. Duff, J.-Y. L'Excellent, and J. Koster, "MUMPS: A General Purpose Distributed Memory Sparse Solver," Proc. Fifth Int'l Workshop Applied Parallel Computing, pp. 122-131, 2000.
-
(2000)
Proc. Fifth Int'l Workshop Applied Parallel Computing
, pp. 122-131
-
-
Amestoy, P.1
Duff, I.2
L'Excellent, J.-Y.3
Koster, J.4
|