메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1402-1409

Deep fisher kernels - End to end learning of the fisher kernel GMM parameters

Author keywords

deep learning; Fisher kernel; Gaussian mixture models; image classification; support vector machines

Indexed keywords

BIOINFORMATICS; DEEP LEARNING; FEEDFORWARD NEURAL NETWORKS; GAUSSIAN DISTRIBUTION; GRADIENT METHODS; IMAGE CLASSIFICATION; LARGE DATASET; LEARNING SYSTEMS; NETWORK LAYERS; OBJECT RECOGNITION; SUPPORT VECTOR MACHINES; VECTORS;

EID: 84911395964     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.182     Document Type: Conference Paper
Times cited : (74)

References (42)
  • 1
    • 84906347548 scopus 로고    scopus 로고
    • Good practice in large-scale learning for image classification
    • Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Good practice in large-scale learning for image classification. PAMI, 2013.
    • (2013) PAMI
    • Akata, Z.1    Perronnin, F.2    Harchaoui, Z.3    Schmid, C.4
  • 2
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the SMO algorithm
    • F. R. Bach, G. R. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML, 2004.
    • (2004) ICML
    • Bach, F.R.1    Lanckriet, G.R.2    Jordan, M.I.3
  • 4
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. PAMI, 35, 2013.
    • (2013) PAMI , vol.35
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 5
    • 85162311477 scopus 로고    scopus 로고
    • PiCoDes: Learning a compact code for novel-category recognition
    • A. Bergamo, L. Torresani, and A. W. Fitzgibbon. PiCoDes: Learning a compact code for novel-category recognition. In NIPS, 2011.
    • (2011) NIPS
    • Bergamo, A.1    Torresani, L.2    Fitzgibbon, A.W.3
  • 8
    • 84898932856 scopus 로고    scopus 로고
    • Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping
    • R. Caruana, S. Lawrence, and L. Giles. Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. NIPS, 2001.
    • (2001) NIPS
    • Caruana, R.1    Lawrence, S.2    Giles, L.3
  • 10
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011.
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 14
    • 70450161376 scopus 로고    scopus 로고
    • Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers
    • P. V. Gehler and S. Nowozin. Let the kernel figure it out; principled learning of pre-processing for kernel classifiers. In CVPR, 2009.
    • (2009) CVPR
    • Gehler, P.V.1    Nowozin, S.2
  • 15
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • P. V. Gehler and S. Nowozin. On feature combination for multiclass object classification. In ICCV, 2009.
    • (2009) ICCV
    • Gehler, P.V.1    Nowozin, S.2
  • 16
  • 17
    • 84898982939 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers
    • T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In NIPS, 1999.
    • (1999) NIPS
    • Jaakkola, T.1    Haussler, D.2
  • 18
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 20
    • 84925402963 scopus 로고    scopus 로고
    • Attribute-based classification for zero-shot visual object categorization
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual object categorization. PAMI, 2013.
    • (2013) PAMI
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 21
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 24
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 25
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A highlevel image representation for scene classification & semantic feature sparsification
    • L.-J. Li, H. Su, L. Fei-Fei, and E. P. Xing. Object bank: A highlevel image representation for scene classification & semantic feature sparsification. In NIPS, 2010.
    • (2010) NIPS
    • Li, L.-J.1    Su, H.2    Fei-Fei, L.3    Xing, E.P.4
  • 26
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2), 2004.
    • (2004) IJCV , vol.60 , Issue.2
    • Lowe, D.G.1
  • 27
    • 0000029122 scopus 로고
    • A simple weight decay can improve generalization
    • J. Moody, S. Hanson, A. Krogh, and J. A. Hertz. A simple weight decay can improve generalization. NIPS, 4, 1995.
    • (1995) NIPS , vol.4
    • Moody, J.1    Hanson, S.2    Krogh, A.3    Hertz, J.A.4
  • 28
    • 84864059224 scopus 로고    scopus 로고
    • Fast discriminative visual codebooks using randomized clustering forests
    • F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using randomized clustering forests. NIPS, 2007.
    • (2007) NIPS
    • Moosmann, F.1    Triggs, B.2    Jurie, F.3
  • 29
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In ICML, 2010.
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 30
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.2
  • 31
    • 79959771606 scopus 로고    scopus 로고
    • Improving the Fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 33
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323(6088), 1986.
    • (1986) Nature , vol.323 , Issue.6088
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 34
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the fisher vector: Theory and practice
    • J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the Fisher vector: Theory and practice. IJCV, 105(3), 2013.
    • (2013) IJCV , vol.105 , Issue.3
    • Sánchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 35
    • 84897374881 scopus 로고    scopus 로고
    • Deep Fisher networks for large-scale image classification
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Fisher networks for large-scale image classification. In NIPS, 2013.
    • (2013) NIPS
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 36
    • 80053444073 scopus 로고    scopus 로고
    • Learning discriminative Fisher kernels
    • L. van der Maaten. Learning discriminative Fisher kernels. In ICML, 2011.
    • (2011) ICML
    • Maaten Der L.Van1
  • 37
    • 71149100224 scopus 로고    scopus 로고
    • More generality in efficient multiple kernel learning
    • M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In ICML, 2009.
    • (2009) ICML
    • Varma, M.1    Babu, B.R.2
  • 39
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 41
    • 51949103737 scopus 로고    scopus 로고
    • Unifying discriminative visual codebook generation with classifier training for object category recognition
    • L. Yang, R. Jin, R. Sukthankar, and F. Jurie. Unifying discriminative visual codebook generation with classifier training for object category recognition. In CVPR, 2008.
    • (2008) CVPR
    • Yang, L.1    Jin, R.2    Sukthankar, R.3    Jurie, F.4
  • 42
    • 80052886214 scopus 로고    scopus 로고
    • Image classification using super-vector coding of local image descriptors
    • X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using super-vector coding of local image descriptors. In ECCV, 2010.
    • (2010) ECCV
    • Zhou, X.1    Yu, K.2    Zhang, T.3    Huang, T.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.