-
1
-
-
84906347548
-
Good practice in large-scale learning for image classification
-
Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Good practice in large-scale learning for image classification. PAMI, 2013.
-
(2013)
PAMI
-
-
Akata, Z.1
Perronnin, F.2
Harchaoui, Z.3
Schmid, C.4
-
2
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F. R. Bach, G. R. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML, 2004.
-
(2004)
ICML
-
-
Bach, F.R.1
Lanckriet, G.R.2
Jordan, M.I.3
-
4
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. PAMI, 35, 2013.
-
(2013)
PAMI
, vol.35
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
5
-
-
85162311477
-
PiCoDes: Learning a compact code for novel-category recognition
-
A. Bergamo, L. Torresani, and A. W. Fitzgibbon. PiCoDes: Learning a compact code for novel-category recognition. In NIPS, 2011.
-
(2011)
NIPS
-
-
Bergamo, A.1
Torresani, L.2
Fitzgibbon, A.W.3
-
8
-
-
84898932856
-
Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping
-
R. Caruana, S. Lawrence, and L. Giles. Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. NIPS, 2001.
-
(2001)
NIPS
-
-
Caruana, R.1
Lawrence, S.2
Giles, L.3
-
9
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine learning, 46(1-3), 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
10
-
-
84898420173
-
The devil is in the details: An evaluation of recent feature encoding methods
-
K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011.
-
(2011)
BMVC
-
-
Chatfield, K.1
Lempitsky, V.2
Vedaldi, A.3
Zisserman, A.4
-
12
-
-
24644524200
-
Visual categorization with bags of keypoints
-
G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization with bags of keypoints. In ECCV Workshop on Statistical Learning in Computer Vision, 2004.
-
(2004)
ECCV Workshop on Statistical Learning in Computer Vision
-
-
Csurka, G.1
Dance, C.2
Fan, L.3
Willamowski, J.4
Bray, C.5
-
13
-
-
77951298115
-
The Pascal visual object classes (VOC) challenge
-
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zis-serman. The Pascal visual object classes (VOC) challenge. IJCV, 88(2), 2010.
-
(2010)
IJCV
, vol.88
, Issue.2
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zis-Serman, A.5
-
14
-
-
70450161376
-
Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers
-
P. V. Gehler and S. Nowozin. Let the kernel figure it out; principled learning of pre-processing for kernel classifiers. In CVPR, 2009.
-
(2009)
CVPR
-
-
Gehler, P.V.1
Nowozin, S.2
-
15
-
-
85067032737
-
On feature combination for multiclass object classification
-
P. V. Gehler and S. Nowozin. On feature combination for multiclass object classification. In ICCV, 2009.
-
(2009)
ICCV
-
-
Gehler, P.V.1
Nowozin, S.2
-
17
-
-
84898982939
-
Exploiting generative models in discriminative classifiers
-
T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In NIPS, 1999.
-
(1999)
NIPS
-
-
Jaakkola, T.1
Haussler, D.2
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
20
-
-
84925402963
-
Attribute-based classification for zero-shot visual object categorization
-
C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual object categorization. PAMI, 2013.
-
(2013)
PAMI
-
-
Lampert, C.H.1
Nickisch, H.2
Harmeling, S.3
-
21
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
-
(2006)
CVPR
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
24
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
-
(2009)
ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
25
-
-
85162513516
-
Object bank: A highlevel image representation for scene classification & semantic feature sparsification
-
L.-J. Li, H. Su, L. Fei-Fei, and E. P. Xing. Object bank: A highlevel image representation for scene classification & semantic feature sparsification. In NIPS, 2010.
-
(2010)
NIPS
-
-
Li, L.-J.1
Su, H.2
Fei-Fei, L.3
Xing, E.P.4
-
26
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2), 2004.
-
(2004)
IJCV
, vol.60
, Issue.2
-
-
Lowe, D.G.1
-
27
-
-
0000029122
-
A simple weight decay can improve generalization
-
J. Moody, S. Hanson, A. Krogh, and J. A. Hertz. A simple weight decay can improve generalization. NIPS, 4, 1995.
-
(1995)
NIPS
, vol.4
-
-
Moody, J.1
Hanson, S.2
Krogh, A.3
Hertz, J.A.4
-
28
-
-
84864059224
-
Fast discriminative visual codebooks using randomized clustering forests
-
F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using randomized clustering forests. NIPS, 2007.
-
(2007)
NIPS
-
-
Moosmann, F.1
Triggs, B.2
Jurie, F.3
-
29
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In ICML, 2010.
-
(2010)
ICML
-
-
Nair, V.1
Hinton, G.E.2
-
30
-
-
34948815101
-
Fisher kernels on visual vocabularies for image categorization
-
F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
-
(2007)
CVPR
-
-
Perronnin, F.1
Dance, C.2
-
31
-
-
79959771606
-
Improving the Fisher kernel for large-scale image classification
-
F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel for large-scale image classification. In ECCV, 2010.
-
(2010)
ECCV
-
-
Perronnin, F.1
Sánchez, J.2
Mensink, T.3
-
33
-
-
0022471098
-
Learning representations by back-propagating errors
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323(6088), 1986.
-
(1986)
Nature
, vol.323
, Issue.6088
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
34
-
-
84883487458
-
Image classification with the fisher vector: Theory and practice
-
J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the Fisher vector: Theory and practice. IJCV, 105(3), 2013.
-
(2013)
IJCV
, vol.105
, Issue.3
-
-
Sánchez, J.1
Perronnin, F.2
Mensink, T.3
Verbeek, J.4
-
35
-
-
84897374881
-
Deep Fisher networks for large-scale image classification
-
K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Fisher networks for large-scale image classification. In NIPS, 2013.
-
(2013)
NIPS
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
36
-
-
80053444073
-
Learning discriminative Fisher kernels
-
L. van der Maaten. Learning discriminative Fisher kernels. In ICML, 2011.
-
(2011)
ICML
-
-
Maaten Der L.Van1
-
37
-
-
71149100224
-
More generality in efficient multiple kernel learning
-
M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In ICML, 2009.
-
(2009)
ICML
-
-
Varma, M.1
Babu, B.R.2
-
39
-
-
77955996870
-
Locality-constrained linear coding for image classification
-
J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.
-
(2010)
CVPR
-
-
Wang, J.1
Yang, J.2
Yu, K.3
Lv, F.4
Huang, T.5
Gong, Y.6
-
41
-
-
51949103737
-
Unifying discriminative visual codebook generation with classifier training for object category recognition
-
L. Yang, R. Jin, R. Sukthankar, and F. Jurie. Unifying discriminative visual codebook generation with classifier training for object category recognition. In CVPR, 2008.
-
(2008)
CVPR
-
-
Yang, L.1
Jin, R.2
Sukthankar, R.3
Jurie, F.4
-
42
-
-
80052886214
-
Image classification using super-vector coding of local image descriptors
-
X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using super-vector coding of local image descriptors. In ECCV, 2010.
-
(2010)
ECCV
-
-
Zhou, X.1
Yu, K.2
Zhang, T.3
Huang, T.S.4
|