메뉴 건너뛰기




Volumn 108, Issue 501, 2013, Pages 288-300

Learning sparse causal Gaussian networks with experimental intervention: Regularization and coordinate descent

Author keywords

Adaptive lasso; Experimental data; L1 regularization; Penalized likelihood; Structure learning

Indexed keywords


EID: 84878227409     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2012.754359     Document Type: Article
Times cited : (84)

References (34)
  • 1
    • 41549101939 scopus 로고    scopus 로고
    • Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data
    • [288]
    • Banerjee, O., El Ghaoui, L., and d'Aspremont, A. (2008). "Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data, " Journal of Machine Learning Research, 9, 485-516. [288]
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    d'Aspremont, A.3
  • 2
    • 34249832377 scopus 로고
    • A Bayesian Method for the Induction of Probabilistic Networks From Data
    • [288]
    • Cooper, G. F., and Herskovits, E. (1992). "A Bayesian Method for the Induction of Probabilistic Networks From Data, " Machine Learning, 9, 309-347. [288]
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 5
    • 84878220697 scopus 로고    scopus 로고
    • unpublished Ph. D, dissertation, Harvard University. [291]
    • Ellis, B. (2006). "Inference onBayesian Network Structures, " unpublished Ph.D. dissertation, Harvard University. [291]
    • (2006) Inference onBayesian Network Structures
    • Ellis, B.1
  • 6
    • 49549100459 scopus 로고    scopus 로고
    • Learning Causal Bayesian Network Structures From Experimental Data
    • [288,295,298]
    • Ellis, B., and Wong, W. H. (2008). "Learning Causal Bayesian Network Structures From Experimental Data, " Journal of the American Statistical Association, 103, 778-789. [288,295,298]
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 778-789
    • Ellis, B.1    Wong, W.H.2
  • 7
    • 73949117731 scopus 로고    scopus 로고
    • Network Exploration via the Adaptive Lasso and SCAD Penalties
    • [293]
    • Fan, J., Feng, Y., and Wu, Y. (2009). "Network Exploration via the Adaptive Lasso and SCAD Penalties, " The Annals of Applied Statistics, 3, 521-541. [293]
    • (2009) The Annals of Applied Statistics , vol.3 , pp. 521-541
    • Fan, J.1    Feng, Y.2    Wu, Y.3
  • 8
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties
    • [290]
    • Fan, J., and Li, R. (2001). "Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties, " Journal of the American Statistical Association, 96, 1348-1360. [290]
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 10
    • 45849134070 scopus 로고    scopus 로고
    • Sparse Inverse Covariance Estimation With the Graphical Lasso
    • [288,297]
    • Friedman, J., Hastie, T., and Tibshirani, R. (2008). "Sparse Inverse Covariance Estimation With the Graphical Lasso, " Biostatistics, 9, 432-441. [288,297]
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 77950537175 scopus 로고    scopus 로고
    • Regularization Paths for Generalized Linear Models via Coordinate Descent
    • [291]
    • Friedman, J., Hastie, T., and Tibshirani, R. (2010). "Regularization Paths for Generalized Linear Models via Coordinate Descent, " Journal of Statistical Software, 33, 1-22. [291]
    • (2010) Journal of Statistical Software , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian About Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks
    • [288]
    • Friedman, N., and Koller, D. (2003). "Being Bayesian About Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks, " Machine Learning, 50, 95-125. [288]
    • (2003) Machine Learning , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 13
    • 0032361278 scopus 로고    scopus 로고
    • Penalized Regressions: The Bridge versus the Lasso
    • [290]
    • Fu, W. (1998). "Penalized Regressions: The Bridge versus the Lasso, " Journal of Computational and Graphical Statistics, 7, 397-416. [290]
    • (1998) Journal of Computational and Graphical Statistics , vol.7 , pp. 397-416
    • Fu, W.1
  • 14
    • 84869152656 scopus 로고    scopus 로고
    • Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs
    • [293,298]
    • Hauser, A., and Bühlmann, P. (2012). "Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs, " Journal of Machine Learning Research, 13, 2409-2464. [293,298]
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 2409-2464
    • Hauser, A.1    Bühlmann, P.2
  • 15
    • 34249761849 scopus 로고
    • Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
    • [288]
    • Heckerman, D., Geiger, D., and Chickering, D. M. (1995). "Learning Bayesian Networks: The Combination of Knowledge and Statistical Data, " Machine Learning, 20, 197-243. [288]
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 16
    • 33947524259 scopus 로고    scopus 로고
    • Estimating High-Dimensional Directed Acyclic Graphs With the PC-Algorithm
    • [288]
    • Kalisch, M., and Bühlmann, P. (2007). "Estimating High-Dimensional Directed Acyclic Graphs With the PC-Algorithm, " Journal of Machine Learning Research, 8, 613-636. [288]
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 18
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation
    • [298]
    • Lam, C., and Fan, J. (2009), "Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation, " The Annals of Statistics, 37, 4254-4278. [298]
    • (2009) The Annals of Statistics , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 19
    • 0028482006 scopus 로고
    • Learning Bayesian Belief Networks: An Approach Based on the MDL Principle
    • [288]
    • Lam, W., and Bacchus, F. (1994). "Learning Bayesian Belief Networks: An Approach Based on the MDL Principle, " Computational Intelligence, 10, 269-293. [288]
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 20
    • 0004047518 scopus 로고    scopus 로고
    • Oxford: Oxford University Press. [293]
    • Lauritzen, S. L. (1996). Graphical Models, Oxford: Oxford University Press. [293]
    • (1996) Graphical Models
    • Lauritzen, S.L.1
  • 21
    • 21844520724 scopus 로고
    • Bayesian Graphical Models for Discrete Data
    • [288]
    • Madigan, D., and York, J. (1995). "Bayesian Graphical Models for Discrete Data, " International Statistical Review, 63, 215-232. [288]
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 22
    • 33747163541 scopus 로고    scopus 로고
    • High-Dimensional Graphs and Variable SelectionWith the Lasso
    • [288,292,298]
    • Meinshausen, N., and Bühlmann, P. (2006). "High-Dimensional Graphs and Variable SelectionWith the Lasso, " The Annals of Statistics, 34, 1436-1462. [288,292,298]
    • (2006) The Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 24
    • 0001457227 scopus 로고
    • Counting Labeled Acyclic Digraphs
    • in, ed. Haray F., New York: Academic Press [288]
    • Robinson, R. W. (1973). "Counting Labeled Acyclic Digraphs, " in New Directions in the Theory of Graphs, ed. Haray F., New York: Academic Press, pp. 239-273. [288]
    • (1973) New Directions in the Theory of Graphs , pp. 239-273
    • Robinson, R.W.1
  • 25
    • 17644427718 scopus 로고    scopus 로고
    • Causal Protein-Signaling Networks Derived From Multiparameter Single-Cell Data
    • [297]
    • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A., and Nolan, G. P. (2005). "Causal Protein-Signaling Networks Derived From Multiparameter Single-Cell Data, " Science, 308, 523-529. [297]
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 26
    • 77953107844 scopus 로고    scopus 로고
    • Penalized Likelihood Methods for Estimation of Sparse High-Dimensional Directed Acyclic Graphs
    • [289,294,296,297]
    • Shojaie, A., andMichailidis, G. (2010). "Penalized Likelihood Methods for Estimation of Sparse High-Dimensional Directed Acyclic Graphs, " Biometrika, 97, 519-538. [289,294,296,297]
    • (2010) Biometrika , vol.97 , pp. 519-538
    • Shojaie, A.1    Michailidis, G.2
  • 29
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization
    • [292]
    • Tseng, P. (2001). "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization, " Journal of Optimization Theory and Applications, 109, 475-494. [292]
    • (2001) Journal of Optimization Theory and Applications , vol.109 , pp. 475-494
    • Tseng, P.1
  • 31
    • 84863879353 scopus 로고    scopus 로고
    • Coordinate Descent Procedures for Lasso Penalized Regression
    • [290]
    • Wu, T., and Lange, K. (2008). "Coordinate Descent Procedures for Lasso Penalized Regression, " The Annals of Applied Statistics, 2, 224-244. [290]
    • (2008) The Annals of Applied Statistics , vol.2 , pp. 224-244
    • Wu, T.1    Lange, K.2
  • 32
    • 33947115409 scopus 로고    scopus 로고
    • Model Selection and Estimation in the Gaussian Graphical Model
    • [288]
    • Yuan, M., and Lin, Y. (2007). "Model Selection and Estimation in the Gaussian Graphical Model, " Biometrika, 94, 19-35. [288]
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 33
    • 84855984607 scopus 로고    scopus 로고
    • Multi-Domain Sampling With Applications to Structural Inference of Bayesian Networks
    • [288,298]
    • Zhou, Q. (2011). "Multi-Domain Sampling With Applications to Structural Inference of Bayesian Networks, " Journal of the American Statistical Association, 106, 1317-1330. [288,298]
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 1317-1330
    • Zhou, Q.1
  • 34
    • 33846114377 scopus 로고    scopus 로고
    • The Adaptive Lasso and Its Oracle Properties
    • [290]
    • Zou, H. (2006). "The Adaptive Lasso and Its Oracle Properties, " Journal of the American Statistical Association, 101, 1418-1429. [290]
    • (2006) Journal of the American Statistical Association , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.