-
1
-
-
0030095171
-
Hailfinder: A Bayesian system for forecasting severe weather
-
Abramson, B., Brown, J., Murphy, A., & Winkler, R. L. (1996). Hailfinder: A Bayesian system for forecasting severe weather. International Journal of Forecasting, 12, 57-71.
-
(1996)
International Journal of Forecasting
, vol.12
, pp. 57-71
-
-
Abramson, B.1
Brown, J.2
Murphy, A.3
Winkler, R.L.4
-
2
-
-
27344447102
-
Learning right sized belief networks by means of a hybrid methodology
-
Acid, S., & de Campos, L. M. (2000). Learning right sized belief networks by means of a hybrid methodology. Lecture Notes in Artificial Intelligence, 1910, 309-315.
-
(2000)
Lecture Notes in Artificial Intelligence
, vol.1910
, pp. 309-315
-
-
Acid, S.1
De Campos, L.M.2
-
4
-
-
0031531764
-
A Characterization of Markov equivalence classes for acyclic digraphs
-
Andersson, S., Madigan, D., & Perlman, M. (1997). A Characterization of Markov equivalence classes for acyclic digraphs. Annals of Statistics, 25, 505-541.
-
(1997)
Annals of Statistics
, vol.25
, pp. 505-541
-
-
Andersson, S.1
Madigan, D.2
Perlman, M.3
-
5
-
-
0002460150
-
The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks
-
Beinlich, I. A., Suermondt, H. J., Chavez, R. M., & Cooper, G. F. (1989). The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks. In Proceedings of the European Conference on Artificial Intelligence in Medicine, 247-256.
-
(1989)
Proceedings of the European Conference on Artificial Intelligence in Medicine
, pp. 247-256
-
-
Beinlich, I.A.1
Suermondt, H.J.2
Chavez, R.M.3
Cooper, G.F.4
-
6
-
-
0031273462
-
Adaptive probabilistic networks with hidden variables
-
Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, 29, 213-244.
-
(1997)
Machine Learning
, vol.29
, pp. 213-244
-
-
Binder, J.1
Koller, D.2
Russell, S.3
Kanazawa, K.4
-
7
-
-
0037322292
-
Learning Bayesian networks in the space of structures by estimation of distribution algorithms
-
Blanco, R., Inza, I., & Larrañaga, P. (2003). Learning Bayesian networks in the space of structures by estimation of distribution algorithms. International Journal of Intelligent Systems, 18, 205-220.
-
(2003)
International Journal of Intelligent Systems
, vol.18
, pp. 205-220
-
-
Blanco, R.1
Inza, I.2
Larrañaga, P.3
-
8
-
-
85017343247
-
Belief networks construction using the minimum description length principle
-
Bouckaert, R. R. (1993). Belief networks construction using the minimum description length principle. Lecture Notes in Computer Science, 747, 41-48.
-
(1993)
Lecture Notes in Computer Science
, vol.747
, pp. 41-48
-
-
Bouckaert, R.R.1
-
12
-
-
0030124955
-
A guide to the literature on learning probabilistic networks from data
-
Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8, 195-210.
-
(1996)
IEEE Transactions on Knowledge and Data Engineering
, vol.8
, pp. 195-210
-
-
Buntine, W.1
-
13
-
-
0003042996
-
An algorithm for Bayesian belief network construction from data
-
Cheng, J., Bell, D. A., & Liu, W. (1997). An algorithm for Bayesian belief network construction from data. In Proceedings of AI and STAT'97, 83-90.
-
(1997)
Proceedings of AI and STAT'97
, pp. 83-90
-
-
Cheng, J.1
Bell, D.A.2
Liu, W.3
-
14
-
-
0038738492
-
Learning Bayesian networks from data: An efficient approach based on information theory
-
University of Alberta
-
Cheng, J., Bell, D. A., & Liu, W. (1998). Learning Bayesian networks from data: An efficient approach based on information theory. Tech. rep., University of Alberta.
-
(1998)
Tech. Rep.
-
-
Cheng, J.1
Bell, D.A.2
Liu, W.3
-
17
-
-
0042496103
-
Learning equivalence classes of Bayesian network structures
-
Chickering, D. M. (2002). Learning equivalence classes of Bayesian network structures. Journal of Machine Learning Research, 2, 445-498.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 445-498
-
-
Chickering, D.M.1
-
18
-
-
0002157592
-
Learning Bayesian networks: Search methods and experimental results
-
Chickering, D. M., Geiger, D., & Heckerman, D. (1995). Learning Bayesian networks: Search methods and experimental results. In Preliminary Papers of the Fifth International Workshop on Artificial Intelligence and Statistics, 112-128.
-
(1995)
Preliminary Papers of the Fifth International Workshop on Artificial Intelligence and Statistics
, pp. 112-128
-
-
Chickering, D.M.1
Geiger, D.2
Heckerman, D.3
-
19
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE transactions on Information Theory, 14, 462-467.
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
20
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-348.
-
(1992)
Machine Learning
, vol.9
, pp. 309-348
-
-
Cooper, G.F.1
Herskovits, E.2
-
23
-
-
0036856515
-
Ant colony optimization for learning Bayesian networks
-
de Campos, L. M., Fernández-Luna, J. M., Gámez, J. A., & Puerta, J. M. (2002). Ant colony optimization for learning Bayesian networks. International Journal of Approximate Reasoning, 91, 291-311.
-
(2002)
International Journal of Approximate Reasoning
, vol.91
, pp. 291-311
-
-
De Campos, L.M.1
Fernández-Luna, J.M.2
Gámez, J.A.3
Puerta, J.M.4
-
24
-
-
26944434176
-
Local search methods for learning Bayesian networks using a modified neighborhood in the space of dags
-
de Campos, L. M., Fernández-Luna, J. M., & Puerta, J. M. (2002). Local search methods for learning Bayesian networks using a modified neighborhood in the space of dags. Lecture Notes in Computer Science, 2527, 182-192.
-
(2002)
Lecture Notes in Computer Science
, vol.2527
, pp. 182-192
-
-
De Campos, L.M.1
Fernández-Luna, J.M.2
Puerta, J.M.3
-
25
-
-
0037320072
-
An iterated local search algorithm for learning Bayesian networks with restarts based on conditional independence tests
-
de Campos, L. M., Fernández-Luna, J. M., & Puerta, J. M. (2003). An iterated local search algorithm for learning Bayesian networks with restarts based on conditional independence tests. International Journal of Intelligent Systems, 18, 221-235.
-
(2003)
International Journal of Intelligent Systems
, vol.18
, pp. 221-235
-
-
De Campos, L.M.1
Fernández-Luna, J.M.2
Puerta, J.M.3
-
26
-
-
33645423346
-
Learning Bayesian networks by ant colony optimisation: Searching in two different spaces
-
in press
-
de Campos, L. M., Gámez, J. A., & Puerta, J. M. (in press). Learning Bayesian networks by ant colony optimisation: Searching in two different spaces. Mathware and Soft Computing.
-
Mathware and Soft Computing
-
-
De Campos, L.M.1
Gámez, J.A.2
Puerta, J.M.3
-
27
-
-
0031185530
-
On the use of independence relationships for learning simplified belief networks
-
de Campos, L. M., & Huete, J. F. (1997). On the use of independence relationships for learning simplified belief networks. International Journal of Intelligent Systems, 12, 495-522.
-
(1997)
International Journal of Intelligent Systems
, vol.12
, pp. 495-522
-
-
De Campos, L.M.1
Huete, J.F.2
-
29
-
-
0001849958
-
Approximating causal orderings for Bayesian networks using genetic algorithms and simulated annealing
-
de Campos, L. M., & Huete, J. F. (2000). Approximating causal orderings for Bayesian networks using genetic algorithms and simulated annealing. In Proceedings of the Eighth IPMU Conference, 333-340.
-
(2000)
Proceedings of the Eighth IPMU Conference
, pp. 333-340
-
-
De Campos, L.M.1
Huete, J.F.2
-
31
-
-
12244288095
-
Stochastic local search algorithms for learning belief networks: Searching in the space of orderings
-
de Campos, L. M., & Puerta, J. M. (2001). Stochastic local search algorithms for learning belief networks: Searching in the space of orderings. Lecture Notes in Artificial Intelligence, 2143, 228-239.
-
(2001)
Lecture Notes in Artificial Intelligence
, vol.2143
, pp. 228-239
-
-
De Campos, L.M.1
Puerta, J.M.2
-
32
-
-
0041995260
-
A simple algorithm to construct a consistent extension of a partially oriented graph
-
Cognitive Systems Laboratory, Department of Computer Science, UCLA
-
Dor, D., & Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a partially oriented graph. Tech. rep. R-185, Cognitive Systems Laboratory, Department of Computer Science, UCLA.
-
(1992)
Tech. Rep.
, vol.R-185
-
-
Dor, D.1
Tarsi, M.2
-
35
-
-
0002219642
-
Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm
-
Friedman, N., Nachman, I., & Peér, D. (1999). Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, 206-215.
-
(1999)
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
, pp. 206-215
-
-
Friedman, N.1
Nachman, I.2
Peér, D.3
-
37
-
-
84990565967
-
Learning causal trees from dependence information
-
Geiger, D., Paz, A., & Pearl, J. (1990). Learning causal trees from dependence information. In Proceedings of AAAI-90, 770-776.
-
(1990)
Proceedings of AAAI-90
, pp. 770-776
-
-
Geiger, D.1
Paz, A.2
Pearl, J.3
-
38
-
-
0027541725
-
Learning simple causal structures
-
Geiger, D., Paz, A., & Pearl, J. (1993). Learning simple causal structures. International Journal of Intelligent Systems, 8, 231-247.
-
(1993)
International Journal of Intelligent Systems
, vol.8
, pp. 231-247
-
-
Geiger, D.1
Paz, A.2
Pearl, J.3
-
41
-
-
0000868434
-
Bayesian networks for knowledge discovery
-
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.). Cambridge: MIT Press
-
Heckerman, D. (1996). Bayesian networks for knowledge discovery. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining. Cambridge: MIT Press, 273-305.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 273-305
-
-
Heckerman, D.1
-
42
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
48
-
-
84904506139
-
MLC++: A machine learning library in C++
-
Kohavi, R., John, G., Long, R., Manley, D., & Pfleger, K. (1994). MLC++: A machine learning library in C++. In Proceedings of the Sixth International Conference on Tools with Artificial Intelligence, 740-743.
-
(1994)
Proceedings of the Sixth International Conference on Tools with Artificial Intelligence
, pp. 740-743
-
-
Kohavi, R.1
John, G.2
Long, R.3
Manley, D.4
Pfleger, K.5
-
50
-
-
0028482006
-
Learning Bayesian belief networks. An approach based on the MDL principle
-
Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks. An approach based on the MDL principle. Computational Intelligence, 10, 269-293.
-
(1994)
Computational Intelligence
, vol.10
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
51
-
-
0030245966
-
Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters
-
Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R., & Kuijpers, C. (1996). Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 912-926.
-
(1996)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.18
, pp. 912-926
-
-
Larrañaga, P.1
Poza, M.2
Yurramendi, Y.3
Murga, R.4
Kuijpers, C.5
-
52
-
-
0030192667
-
Learning Bayesian network structures by searching for the best ordering with genetic algorithms
-
Larrañaga, P., Kuijpers, C., & Murga, R. (1996). Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Transactions on System, Man and Cybernetics, 26, 487-493.
-
(1996)
IEEE Transactions on System, Man and Cybernetics
, vol.26
, pp. 487-493
-
-
Larrañaga, P.1
Kuijpers, C.2
Murga, R.3
-
53
-
-
0000220791
-
Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs
-
Madigan, D., Anderson, S. A., Perlman, M. D., & Volinsky, C. T. (1996). Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Communications in Statistics - Theory and Methods, 25, 2493-2520.
-
(1996)
Communications in Statistics - Theory and Methods
, vol.25
, pp. 2493-2520
-
-
Madigan, D.1
Anderson, S.A.2
Perlman, M.D.3
Volinsky, C.T.4
-
54
-
-
84950945692
-
Model selection and accounting for model uncertainty in graphical models using Occam's window
-
Madigan, D., & Raftery, A. (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of the American Statistics Association, 89, 1535-1546.
-
(1994)
Journal of the American Statistics Association
, vol.89
, pp. 1535-1546
-
-
Madigan, D.1
Raftery, A.2
-
56
-
-
84974731275
-
Efficient score-based learning of equivalence classes of Bayesian networks
-
Muntenau, P., & Cau, D. (2000). Efficient score-based learning of equivalence classes of Bayesian networks. Lecture Notes in Artificial Intelligence, 1910, 96-105.
-
(2000)
Lecture Notes in Artificial Intelligence
, vol.1910
, pp. 96-105
-
-
Muntenau, P.1
Cau, D.2
-
57
-
-
0013321338
-
Learning Bayesian networks from incomplete data with stochastic search algorithms
-
Myers, J. W., Laskey, K. B., & Levitt, T. (1999). Learning Bayesian networks from incomplete data with stochastic search algorithms. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, 476-485.
-
(1999)
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
, pp. 476-485
-
-
Myers, J.W.1
Laskey, K.B.2
Levitt, T.3
-
62
-
-
0042456355
-
The recovery of causal poly-trees from statistical data
-
L.N. Kanal, T.S. Levitt, J.F. Lemmer (Eds.), Amsterdam: North-Holland
-
Rebane, G., & Pearl, J. (1987). The recovery of causal poly-trees from statistical data. In L.N. Kanal, T.S. Levitt, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence 3, Amsterdam: North-Holland, 222-228.
-
(1987)
Uncertainty in Artificial Intelligence
, vol.3
, pp. 222-228
-
-
Rebane, G.1
Pearl, J.2
-
63
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
65
-
-
0001173999
-
Construction of Bayesian network structures from data: A brief survey and an efficient algorithm
-
Singh, M., & Valtorta, M. (1995). Construction of Bayesian network structures from data: A brief survey and an efficient algorithm. International Journal of Approximate Reasoning, 12, 111-131.
-
(1995)
International Journal of Approximate Reasoning
, vol.12
, pp. 111-131
-
-
Singh, M.1
Valtorta, M.2
-
66
-
-
0003614273
-
-
Lecture Notes in Statistics, New York: Springer Verlag
-
Spirtes, P., Glymour, C., & Schemes, R. (1993). Causation, Prediction and Search. Lecture Notes in Statistics 81, New York: Springer Verlag.
-
(1993)
Causation, Prediction and Search
, vol.81
-
-
Spirtes, P.1
Glymour, C.2
Schemes, R.3
-
70
-
-
0008564212
-
Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the B&B technique
-
Suzuki, J. (1996). Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the B&B technique. In Proceedings of the Thirteenth International Conference on Machine Learning, 462-470.
-
(1996)
Proceedings of the Thirteenth International Conference on Machine Learning
, pp. 462-470
-
-
Suzuki, J.1
-
72
-
-
0001779012
-
Causal networks: Semantics and expressiveness
-
R.D. Shachter, T.S. Lewitt, L.N. Kanal, J.F. Lemmer (Eds.), Amsterdam: North-Holland
-
Verma, T., & Pearl, J. (1990). Causal networks: Semantics and expressiveness. In R.D. Shachter, T.S. Lewitt, L.N. Kanal, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, 4, Amsterdam: North-Holland, 69-76.
-
(1990)
Uncertainty in Artificial Intelligence
, vol.4
, pp. 69-76
-
-
Verma, T.1
Pearl, J.2
-
73
-
-
0000243504
-
Graphical and recursive models for contingence tables
-
Wermuth, N., & Lauritzen, S. (1983). Graphical and recursive models for contingence tables. Biometrika, 72, 537-552.
-
(1983)
Biometrika
, vol.72
, pp. 537-552
-
-
Wermuth, N.1
Lauritzen, S.2
-
74
-
-
0033076357
-
Using evolutionay computation and minimum description length principle for data mining of probabilistic knowledge
-
Wong, M. L., Lam, W., & Leung, K. S. (1999). Using evolutionay computation and minimum description length principle for data mining of probabilistic knowledge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 174-178.
-
(1999)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.21
, pp. 174-178
-
-
Wong, M.L.1
Lam, W.2
Leung, K.S.3
|