메뉴 건너뛰기




Volumn 18, Issue , 2003, Pages 445-490

Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs

Author keywords

[No Author keywords available]

Indexed keywords

ALARM SYSTEMS; ALGORITHMS; DECISION THEORY; FUNCTIONS; GRAPH THEORY; SEARCH ENGINES;

EID: 21244484641     PISSN: 10769757     EISSN: 10769757     Source Type: Journal    
DOI: 10.1613/jair.1061     Document Type: Review
Times cited : (110)

References (74)
  • 2
    • 27344447102 scopus 로고    scopus 로고
    • Learning right sized belief networks by means of a hybrid methodology
    • Acid, S., & de Campos, L. M. (2000). Learning right sized belief networks by means of a hybrid methodology. Lecture Notes in Artificial Intelligence, 1910, 309-315.
    • (2000) Lecture Notes in Artificial Intelligence , vol.1910 , pp. 309-315
    • Acid, S.1    De Campos, L.M.2
  • 4
    • 0031531764 scopus 로고    scopus 로고
    • A Characterization of Markov equivalence classes for acyclic digraphs
    • Andersson, S., Madigan, D., & Perlman, M. (1997). A Characterization of Markov equivalence classes for acyclic digraphs. Annals of Statistics, 25, 505-541.
    • (1997) Annals of Statistics , vol.25 , pp. 505-541
    • Andersson, S.1    Madigan, D.2    Perlman, M.3
  • 6
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, 29, 213-244.
    • (1997) Machine Learning , vol.29 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 7
    • 0037322292 scopus 로고    scopus 로고
    • Learning Bayesian networks in the space of structures by estimation of distribution algorithms
    • Blanco, R., Inza, I., & Larrañaga, P. (2003). Learning Bayesian networks in the space of structures by estimation of distribution algorithms. International Journal of Intelligent Systems, 18, 205-220.
    • (2003) International Journal of Intelligent Systems , vol.18 , pp. 205-220
    • Blanco, R.1    Inza, I.2    Larrañaga, P.3
  • 8
    • 85017343247 scopus 로고
    • Belief networks construction using the minimum description length principle
    • Bouckaert, R. R. (1993). Belief networks construction using the minimum description length principle. Lecture Notes in Computer Science, 747, 41-48.
    • (1993) Lecture Notes in Computer Science , vol.747 , pp. 41-48
    • Bouckaert, R.R.1
  • 12
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8, 195-210.
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , pp. 195-210
    • Buntine, W.1
  • 13
    • 0003042996 scopus 로고    scopus 로고
    • An algorithm for Bayesian belief network construction from data
    • Cheng, J., Bell, D. A., & Liu, W. (1997). An algorithm for Bayesian belief network construction from data. In Proceedings of AI and STAT'97, 83-90.
    • (1997) Proceedings of AI and STAT'97 , pp. 83-90
    • Cheng, J.1    Bell, D.A.2    Liu, W.3
  • 14
    • 0038738492 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An efficient approach based on information theory
    • University of Alberta
    • Cheng, J., Bell, D. A., & Liu, W. (1998). Learning Bayesian networks from data: An efficient approach based on information theory. Tech. rep., University of Alberta.
    • (1998) Tech. Rep.
    • Cheng, J.1    Bell, D.A.2    Liu, W.3
  • 17
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian network structures
    • Chickering, D. M. (2002). Learning equivalence classes of Bayesian network structures. Journal of Machine Learning Research, 2, 445-498.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 19
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE transactions on Information Theory, 14, 462-467.
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 20
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-348.
    • (1992) Machine Learning , vol.9 , pp. 309-348
    • Cooper, G.F.1    Herskovits, E.2
  • 24
    • 26944434176 scopus 로고    scopus 로고
    • Local search methods for learning Bayesian networks using a modified neighborhood in the space of dags
    • de Campos, L. M., Fernández-Luna, J. M., & Puerta, J. M. (2002). Local search methods for learning Bayesian networks using a modified neighborhood in the space of dags. Lecture Notes in Computer Science, 2527, 182-192.
    • (2002) Lecture Notes in Computer Science , vol.2527 , pp. 182-192
    • De Campos, L.M.1    Fernández-Luna, J.M.2    Puerta, J.M.3
  • 25
    • 0037320072 scopus 로고    scopus 로고
    • An iterated local search algorithm for learning Bayesian networks with restarts based on conditional independence tests
    • de Campos, L. M., Fernández-Luna, J. M., & Puerta, J. M. (2003). An iterated local search algorithm for learning Bayesian networks with restarts based on conditional independence tests. International Journal of Intelligent Systems, 18, 221-235.
    • (2003) International Journal of Intelligent Systems , vol.18 , pp. 221-235
    • De Campos, L.M.1    Fernández-Luna, J.M.2    Puerta, J.M.3
  • 26
    • 33645423346 scopus 로고    scopus 로고
    • Learning Bayesian networks by ant colony optimisation: Searching in two different spaces
    • in press
    • de Campos, L. M., Gámez, J. A., & Puerta, J. M. (in press). Learning Bayesian networks by ant colony optimisation: Searching in two different spaces. Mathware and Soft Computing.
    • Mathware and Soft Computing
    • De Campos, L.M.1    Gámez, J.A.2    Puerta, J.M.3
  • 27
    • 0031185530 scopus 로고    scopus 로고
    • On the use of independence relationships for learning simplified belief networks
    • de Campos, L. M., & Huete, J. F. (1997). On the use of independence relationships for learning simplified belief networks. International Journal of Intelligent Systems, 12, 495-522.
    • (1997) International Journal of Intelligent Systems , vol.12 , pp. 495-522
    • De Campos, L.M.1    Huete, J.F.2
  • 29
    • 0001849958 scopus 로고    scopus 로고
    • Approximating causal orderings for Bayesian networks using genetic algorithms and simulated annealing
    • de Campos, L. M., & Huete, J. F. (2000). Approximating causal orderings for Bayesian networks using genetic algorithms and simulated annealing. In Proceedings of the Eighth IPMU Conference, 333-340.
    • (2000) Proceedings of the Eighth IPMU Conference , pp. 333-340
    • De Campos, L.M.1    Huete, J.F.2
  • 31
    • 12244288095 scopus 로고    scopus 로고
    • Stochastic local search algorithms for learning belief networks: Searching in the space of orderings
    • de Campos, L. M., & Puerta, J. M. (2001). Stochastic local search algorithms for learning belief networks: Searching in the space of orderings. Lecture Notes in Artificial Intelligence, 2143, 228-239.
    • (2001) Lecture Notes in Artificial Intelligence , vol.2143 , pp. 228-239
    • De Campos, L.M.1    Puerta, J.M.2
  • 32
    • 0041995260 scopus 로고
    • A simple algorithm to construct a consistent extension of a partially oriented graph
    • Cognitive Systems Laboratory, Department of Computer Science, UCLA
    • Dor, D., & Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a partially oriented graph. Tech. rep. R-185, Cognitive Systems Laboratory, Department of Computer Science, UCLA.
    • (1992) Tech. Rep. , vol.R-185
    • Dor, D.1    Tarsi, M.2
  • 37
    • 84990565967 scopus 로고
    • Learning causal trees from dependence information
    • Geiger, D., Paz, A., & Pearl, J. (1990). Learning causal trees from dependence information. In Proceedings of AAAI-90, 770-776.
    • (1990) Proceedings of AAAI-90 , pp. 770-776
    • Geiger, D.1    Paz, A.2    Pearl, J.3
  • 41
    • 0000868434 scopus 로고    scopus 로고
    • Bayesian networks for knowledge discovery
    • U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.). Cambridge: MIT Press
    • Heckerman, D. (1996). Bayesian networks for knowledge discovery. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining. Cambridge: MIT Press, 273-305.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 273-305
    • Heckerman, D.1
  • 42
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 50
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks. An approach based on the MDL principle
    • Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks. An approach based on the MDL principle. Computational Intelligence, 10, 269-293.
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 52
    • 0030192667 scopus 로고    scopus 로고
    • Learning Bayesian network structures by searching for the best ordering with genetic algorithms
    • Larrañaga, P., Kuijpers, C., & Murga, R. (1996). Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Transactions on System, Man and Cybernetics, 26, 487-493.
    • (1996) IEEE Transactions on System, Man and Cybernetics , vol.26 , pp. 487-493
    • Larrañaga, P.1    Kuijpers, C.2    Murga, R.3
  • 54
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • Madigan, D., & Raftery, A. (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of the American Statistics Association, 89, 1535-1546.
    • (1994) Journal of the American Statistics Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.2
  • 56
    • 84974731275 scopus 로고    scopus 로고
    • Efficient score-based learning of equivalence classes of Bayesian networks
    • Muntenau, P., & Cau, D. (2000). Efficient score-based learning of equivalence classes of Bayesian networks. Lecture Notes in Artificial Intelligence, 1910, 96-105.
    • (2000) Lecture Notes in Artificial Intelligence , vol.1910 , pp. 96-105
    • Muntenau, P.1    Cau, D.2
  • 62
    • 0042456355 scopus 로고
    • The recovery of causal poly-trees from statistical data
    • L.N. Kanal, T.S. Levitt, J.F. Lemmer (Eds.), Amsterdam: North-Holland
    • Rebane, G., & Pearl, J. (1987). The recovery of causal poly-trees from statistical data. In L.N. Kanal, T.S. Levitt, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence 3, Amsterdam: North-Holland, 222-228.
    • (1987) Uncertainty in Artificial Intelligence , vol.3 , pp. 222-228
    • Rebane, G.1    Pearl, J.2
  • 63
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 65
    • 0001173999 scopus 로고
    • Construction of Bayesian network structures from data: A brief survey and an efficient algorithm
    • Singh, M., & Valtorta, M. (1995). Construction of Bayesian network structures from data: A brief survey and an efficient algorithm. International Journal of Approximate Reasoning, 12, 111-131.
    • (1995) International Journal of Approximate Reasoning , vol.12 , pp. 111-131
    • Singh, M.1    Valtorta, M.2
  • 70
    • 0008564212 scopus 로고    scopus 로고
    • Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the B&B technique
    • Suzuki, J. (1996). Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the B&B technique. In Proceedings of the Thirteenth International Conference on Machine Learning, 462-470.
    • (1996) Proceedings of the Thirteenth International Conference on Machine Learning , pp. 462-470
    • Suzuki, J.1
  • 72
    • 0001779012 scopus 로고
    • Causal networks: Semantics and expressiveness
    • R.D. Shachter, T.S. Lewitt, L.N. Kanal, J.F. Lemmer (Eds.), Amsterdam: North-Holland
    • Verma, T., & Pearl, J. (1990). Causal networks: Semantics and expressiveness. In R.D. Shachter, T.S. Lewitt, L.N. Kanal, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, 4, Amsterdam: North-Holland, 69-76.
    • (1990) Uncertainty in Artificial Intelligence , vol.4 , pp. 69-76
    • Verma, T.1    Pearl, J.2
  • 73
    • 0000243504 scopus 로고
    • Graphical and recursive models for contingence tables
    • Wermuth, N., & Lauritzen, S. (1983). Graphical and recursive models for contingence tables. Biometrika, 72, 537-552.
    • (1983) Biometrika , vol.72 , pp. 537-552
    • Wermuth, N.1    Lauritzen, S.2
  • 74
    • 0033076357 scopus 로고    scopus 로고
    • Using evolutionay computation and minimum description length principle for data mining of probabilistic knowledge
    • Wong, M. L., Lam, W., & Leung, K. S. (1999). Using evolutionay computation and minimum description length principle for data mining of probabilistic knowledge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 174-178.
    • (1999) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.21 , pp. 174-178
    • Wong, M.L.1    Lam, W.2    Leung, K.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.