메뉴 건너뛰기




Volumn 54, Issue 2, 2011, Pages 875-891

Network modelling methods for FMRI

Author keywords

Causality; FMRI; Network modelling

Indexed keywords

ACCURACY; ARTICLE; ARTIFICIAL NEURAL NETWORK; BAYESIAN LEARNING; COMPUTER SIMULATION; CONTROLLED STUDY; FUNCTIONAL MAGNETIC RESONANCE IMAGING; INFORMATION PROCESSING; INTERMETHOD COMPARISON; PRIORITY JOURNAL; SENSITIVITY AND SPECIFICITY; STRUCTURAL EQUATION MODELING; TIME SERIES ANALYSIS;

EID: 78649717035     PISSN: 10538119     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2010.08.063     Document Type: Article
Times cited : (1621)

References (59)
  • 1
    • 0035377249 scopus 로고    scopus 로고
    • Partial directed coherence: a new concept in neural structure determination
    • Baccalá L., Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 2001, 84(6):463-474.
    • (2001) Biol. Cybern. , vol.84 , Issue.6 , pp. 463-474
    • Baccalá, L.1    Sameshima, K.2
  • 3
    • 0031809018 scopus 로고    scopus 로고
    • Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
    • Buxton R., Wong E., Frank L. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn. Reson. Med. 1998, 39:855-864.
    • (1998) Magn. Reson. Med. , vol.39 , pp. 855-864
    • Buxton, R.1    Wong, E.2    Frank, L.3
  • 4
    • 75249093217 scopus 로고    scopus 로고
    • Time-frequency dynamics of resting-state brain connectivity measured with fMRI
    • Chang C., Glover G. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 2010, 50:81-98.
    • (2010) Neuroimage , vol.50 , pp. 81-98
    • Chang, C.1    Glover, G.2
  • 5
    • 52049095479 scopus 로고    scopus 로고
    • Mapping and correction of vascular hemodynamic latency in the BOLD signal
    • Chang C., Thomason M., Glover G. Mapping and correction of vascular hemodynamic latency in the BOLD signal. Neuroimage 2008, 43:90-102.
    • (2008) Neuroimage , vol.43 , pp. 90-102
    • Chang, C.1    Thomason, M.2    Glover, G.3
  • 6
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering D. Optimal structure identification with greedy search. J. Mach. Learn. Res. 2003, 3:507-554.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 507-554
    • Chickering, D.1
  • 7
    • 70349243080 scopus 로고    scopus 로고
    • Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
    • Daunizeau J., Friston K., Kiebel S. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Phys. D Nonlinear Phenom. 2009, 238(21):2089-2118.
    • (2009) Phys. D Nonlinear Phenom. , vol.238 , Issue.21 , pp. 2089-2118
    • Daunizeau, J.1    Friston, K.2    Kiebel, S.3
  • 8
    • 70349976267 scopus 로고    scopus 로고
    • A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG
    • Dauwels J., Vialatte F., Musha T., Cichocki A. A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG. Neuroimage 2010, 49(1):668-693.
    • (2010) Neuroimage , vol.49 , Issue.1 , pp. 668-693
    • Dauwels, J.1    Vialatte, F.2    Musha, T.3    Cichocki, A.4
  • 9
    • 78649694312 scopus 로고    scopus 로고
    • in press. fMRI connectivity, meaning and empiricism: Comments on: Roebroeck et al. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage, Corrected Proof:-
    • David, O., in press. fMRI connectivity, meaning and empiricism: Comments on: Roebroeck et al. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage, Corrected Proof:-
    • David, O.1
  • 12
    • 77952564109 scopus 로고    scopus 로고
    • Assessing and compensating for zero-lag correlation effects in time-lagged Granger causality analysis of fMRI
    • Deshpande G., Sathian K., Hu X. Assessing and compensating for zero-lag correlation effects in time-lagged Granger causality analysis of fMRI. IEEE Trans. Biomed. Eng. 2010, 57(6):1446-1456.
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , Issue.6 , pp. 1446-1456
    • Deshpande, G.1    Sathian, K.2    Hu, X.3
  • 13
    • 77954383549 scopus 로고    scopus 로고
    • Effect of hemodynamic variability on Granger causality analysis of fMRI
    • Deshpande G., Sathian K., Hu X. Effect of hemodynamic variability on Granger causality analysis of fMRI. Neuroimage 2010, 52(3):884-896.
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 884-896
    • Deshpande, G.1    Sathian, K.2    Hu, X.3
  • 14
    • 66349133709 scopus 로고    scopus 로고
    • The global signal and observed anticorrelated resting state brain networks
    • Fox M., Zhang D., Snyder A., Raichle M. The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 2009, 101(6):3270-3283.
    • (2009) J. Neurophysiol. , vol.101 , Issue.6 , pp. 3270-3283
    • Fox, M.1    Zhang, D.2    Snyder, A.3    Raichle, M.4
  • 15
    • 78649687786 scopus 로고    scopus 로고
    • Searching the DCM model space, and some generalizations. NeuroImage. In submission.
    • Freenor, M. and Glymour, C., 2010. Searching the DCM model space, and some generalizations. NeuroImage. In submission.
    • (2010)
    • Freenor, M.1    Glymour, C.2
  • 16
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the Graphical Lasso
    • Friedman J., Hastie T., Tibshirani R. Sparse inverse covariance estimation with the Graphical Lasso. Biostat 2008, 9(3):432-441.
    • (2008) Biostat , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 17
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: a synthesis
    • Friston K. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 1994, 2:56-78.
    • (1994) Hum. Brain Mapp. , vol.2 , pp. 56-78
    • Friston, K.1
  • 18
    • 61349120207 scopus 로고    scopus 로고
    • Causal modelling and brain connectivity in functional magnetic resonance imaging
    • Friston K. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol. 2009, 7(2):e1000033.
    • (2009) PLoS Biol. , vol.7 , Issue.2
    • Friston, K.1
  • 19
    • 78649716622 scopus 로고    scopus 로고
    • in press. Dynamic causal modeling and Granger causality. Comments on: The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage, Corrected Proof:-
    • Friston, K., in press. Dynamic causal modeling and Granger causality. Comments on: The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage, Corrected Proof:-
    • Friston, K.1
  • 20
  • 21
    • 84950949120 scopus 로고
    • Measures of conditional linear dependence and feedback between time series
    • Geweke J.F. Measures of conditional linear dependence and feedback between time series. J. Am. Stat. Assoc. 1984, 79(388):907-915.
    • (1984) J. Am. Stat. Assoc. , vol.79 , Issue.388 , pp. 907-915
    • Geweke, J.F.1
  • 22
    • 1042301100 scopus 로고    scopus 로고
    • Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping
    • Goebel R., Roebroeck A., Kim D.-S., Formisano E. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn. Reson. Imaging 2003, 21(10):1251-1261.
    • (2003) Magn. Reson. Imaging , vol.21 , Issue.10 , pp. 1251-1261
    • Goebel, R.1    Roebroeck, A.2    Kim, D.-S.3    Formisano, E.4
  • 23
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37(3):424-438.
    • (1969) Econometrica , vol.37 , Issue.3 , pp. 424-438
    • Granger, C.W.J.1
  • 24
    • 12744269470 scopus 로고    scopus 로고
    • Application of the cross wavelet transform and wavelet coherence to geophysical time series
    • Grinsted A., Moore J., Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys. 2004, 11(5/6):561-566.
    • (2004) Nonlinear Processes Geophys. , vol.11 , Issue.5-6 , pp. 561-566
    • Grinsted, A.1    Moore, J.2    Jevrejeva, S.3
  • 25
    • 44449088854 scopus 로고    scopus 로고
    • Partial Granger causality-eliminating exogenous inputs and latent variables
    • Guo S., Seth A.K., Kendrick K.M., Zhou C., Feng J. Partial Granger causality-eliminating exogenous inputs and latent variables. J. Neurosci. Meth. 2008, 172(1):79-93.
    • (2008) J. Neurosci. Meth. , vol.172 , Issue.1 , pp. 79-93
    • Guo, S.1    Seth, A.K.2    Kendrick, K.M.3    Zhou, C.4    Feng, J.5
  • 26
    • 1842505168 scopus 로고    scopus 로고
    • Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
    • Handwerker D., Ollinger J., D'Esposito M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 2004, 21:1639-1651.
    • (2004) Neuroimage , vol.21 , pp. 1639-1651
    • Handwerker, D.1    Ollinger, J.2    D'Esposito, M.3
  • 27
    • 77955306267 scopus 로고    scopus 로고
    • Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data
    • Havlicek M., Jan J., Brazdil M., Calhoun V.D. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data. NeuroImage 2010, 53(1):65-77.
    • (2010) NeuroImage , vol.53 , Issue.1 , pp. 65-77
    • Havlicek, M.1    Jan, J.2    Brazdil, M.3    Calhoun, V.D.4
  • 28
    • 0031106343 scopus 로고    scopus 로고
    • Topographic analysis of coherence and propagation of EEG activity during sleep and wakefulness
    • Kami?ski M., Blinowska K., Szelenberger W. Topographic analysis of coherence and propagation of EEG activity during sleep and wakefulness. Electroencephalogr. Clin. Neurophysiol. 1997, 102(3):216-227.
    • (1997) Electroencephalogr. Clin. Neurophysiol. , vol.102 , Issue.3 , pp. 216-227
    • Kamiski, M.1    Blinowska, K.2    Szelenberger, W.3
  • 32
    • 61449192343 scopus 로고    scopus 로고
    • Large-scale neural model validation of partial correlation analysis for effective connectivity investigation in functional MRI
    • Marrelec G., Kim J., Doyon J., Horwitz B. Large-scale neural model validation of partial correlation analysis for effective connectivity investigation in functional MRI. Hum. Brain Mapp. 2009, 30(3):941-950.
    • (2009) Hum. Brain Mapp. , vol.30 , Issue.3 , pp. 941-950
    • Marrelec, G.1    Kim, J.2    Doyon, J.3    Horwitz, B.4
  • 34
    • 0028312413 scopus 로고
    • Structural equation modeling and its application to network analysis in functional brain imaging
    • McIntosh A., Gonzales-Lima F. Structural equation modeling and its application to network analysis in functional brain imaging. Hum. Brain Mapp. 1994, 2:2-22.
    • (1994) Hum. Brain Mapp. , vol.2 , pp. 2-22
    • McIntosh, A.1    Gonzales-Lima, F.2
  • 36
    • 34047092170 scopus 로고    scopus 로고
    • Mitigating the effects of measurement noise on Granger causality
    • Nalatore H., Ding M., Rangarajan G. Mitigating the effects of measurement noise on Granger causality. Phys. Rev. E 2007, 75(3):31123.1-31123.10.
    • (2007) Phys. Rev. E , vol.75 , Issue.3
    • Nalatore, H.1    Ding, M.2    Rangarajan, G.3
  • 38
    • 33645218351 scopus 로고    scopus 로고
    • A Bayesian approach to determining connectivity of the human brain
    • Patel R., Bowman F., Rilling J. A Bayesian approach to determining connectivity of the human brain. Hum. Brain Mapp. 2006, 27:267-276.
    • (2006) Hum. Brain Mapp. , vol.27 , pp. 267-276
    • Patel, R.1    Bowman, F.2    Rilling, J.3
  • 39
    • 27844612542 scopus 로고    scopus 로고
    • Nonlinear multivariate analysis of neurophysiological signals
    • Pereda E., Quiroga R., Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 2005, 77(1-2):1-37.
    • (2005) Prog. Neurobiol. , vol.77 , Issue.1-2 , pp. 1-37
    • Pereda, E.1    Quiroga, R.2    Bhattacharya, J.3
  • 40
    • 59649126701 scopus 로고    scopus 로고
    • Contrasting activity profile of two distributed cortical networks as a function of attentional demands
    • Popa D., Popescu A., Paré D. Contrasting activity profile of two distributed cortical networks as a function of attentional demands. J. Neurosci. 2009, 29(4):1191-1201.
    • (2009) J. Neurosci. , vol.29 , Issue.4 , pp. 1191-1201
    • Popa, D.1    Popescu, A.2    Paré, D.3
  • 41
    • 85035246836 scopus 로고    scopus 로고
    • Performance of different synchronization measures in real data: a case study on electroencephalographic signals
    • Quian Quiroga R., Kraskov A., Kreuz T., Grassberger P. Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys. Rev. E 2002, 65(4):41903.
    • (2002) Phys. Rev. E , vol.65 , Issue.4 , pp. 41903
    • Quian Quiroga, R.1    Kraskov, A.2    Kreuz, T.3    Grassberger, P.4
  • 44
    • 0012720970 scopus 로고    scopus 로고
    • Automated discovery of linear feedback models
    • MIT Press, C. Glymour, G. Cooper (Eds.)
    • Richardson T., Spirtes P. Automated discovery of linear feedback models. Computation, Causation, and Causality 2001, MIT Press. C. Glymour, G. Cooper (Eds.).
    • (2001) Computation, Causation, and Causality
    • Richardson, T.1    Spirtes, P.2
  • 45
    • 12044252386 scopus 로고
    • Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay
    • Ringo J., Doty R., Demeter S., Simard P. Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb. Cortex 1994, 4:331-343.
    • (1994) Cereb. Cortex , vol.4 , pp. 331-343
    • Ringo, J.1    Doty, R.2    Demeter, S.3    Simard, P.4
  • 46
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain using Granger causality and fMRI
    • Roebroeck A., Formisano E., Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 2005, 25(1):230-242.
    • (2005) Neuroimage , vol.25 , Issue.1 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 47
    • 78649715125 scopus 로고    scopus 로고
    • in press. Reply to Friston and David: After comments on: The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage, Corrected Proof:-
    • Roebroeck, A., Formisano, E., and Goebel, R., in press. Reply to Friston and David: After comments on: The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage, Corrected Proof:-
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 48
    • 78649689691 scopus 로고    scopus 로고
    • in press. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage, Corrected Proof:-
    • Roebroeck, A., Formisano, E., and Goebel, R., in press. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage, Corrected Proof:-
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 50
    • 74149089224 scopus 로고    scopus 로고
    • A MATLAB toolbox for Granger causal connectivity analysis
    • Seth A.K. A MATLAB toolbox for Granger causal connectivity analysis. J. Neurosci. Meth. 2010, 186(2):262-273.
    • (2010) J. Neurosci. Meth. , vol.186 , Issue.2 , pp. 262-273
    • Seth, A.K.1
  • 51
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Shannon C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27:379-423.
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.1
  • 53
    • 0017147485 scopus 로고
    • Effect of temporal aggregation on the dynamic relationship of two time series variables
    • Tiao G., Wei W. Effect of temporal aggregation on the dynamic relationship of two time series variables. Biometrika 1976, 63(3):513-523.
    • (1976) Biometrika , vol.63 , Issue.3 , pp. 513-523
    • Tiao, G.1    Wei, W.2
  • 54
    • 0011604203 scopus 로고
    • The effect of temporal aggregation on parameter estimation in distributed lag model
    • Wei W. The effect of temporal aggregation on parameter estimation in distributed lag model. J. Econometrics 1978, 8(2):237-246.
    • (1978) J. Econometrics , vol.8 , Issue.2 , pp. 237-246
    • Wei, W.1
  • 55
    • 0000447571 scopus 로고
    • Systematic sampling and temporal aggregation in time series models
    • Weiss A. Systematic sampling and temporal aggregation in time series models. J. Econometrics 1984, 26(3):271-281.
    • (1984) J. Econometrics , vol.26 , Issue.3 , pp. 271-281
    • Weiss, A.1
  • 56
    • 77949658536 scopus 로고    scopus 로고
    • The effects of computational method, data modeling, and TR on effective connectivity results
    • Witt S., Meyerand M. The effects of computational method, data modeling, and TR on effective connectivity results. Brain Imaging Behav. 2009, 3:220-231.
    • (2009) Brain Imaging Behav. , vol.3 , pp. 220-231
    • Witt, S.1    Meyerand, M.2
  • 57
    • 0001589778 scopus 로고
    • Correlation and causation
    • Wright S. Correlation and causation. J. Agric. Res. 1920, 20:557-585.
    • (1920) J. Agric. Res. , vol.20 , pp. 557-585
    • Wright, S.1
  • 58
    • 52949097616 scopus 로고    scopus 로고
    • On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias
    • Zhang J. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artif. Intell. 2008, 172:1873-1896.
    • (2008) Artif. Intell. , vol.172 , pp. 1873-1896
    • Zhang, J.1
  • 59
    • 67651020759 scopus 로고    scopus 로고
    • MATLAB toolbox for functional connectivity
    • Zhou D., Thompson W.K., Siegle G. MATLAB toolbox for functional connectivity. Neuroimage 2009, 47(4):1590-1607.
    • (2009) Neuroimage , vol.47 , Issue.4 , pp. 1590-1607
    • Zhou, D.1    Thompson, W.K.2    Siegle, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.