메뉴 건너뛰기




Volumn 22, Issue 1-2, 2011, Pages 106-148

Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood

Author keywords

[No Author keywords available]

Indexed keywords

CANDIDATE SOLUTION; COMPUTATIONAL DEMANDS; COMPUTATIONALLY EFFICIENT; DATA SETS; DIFFERENT DOMAINS; EFFICIENT METHOD; HEURISTIC SEARCH; HIGH-DIMENSIONAL; HILL CLIMBING; HILL CLIMBING ALGORITHMS; LEARNING APPROACH; LEARNING BAYESIAN NETWORKS; NP-HARD PROBLEM; OPTIMAL RESULTS; SEARCH PROCESS; THEORETICAL RESULT; TRAINING DATA; TWO STAGE;

EID: 78651369196     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-010-0178-6     Document Type: Article
Times cited : (209)

References (51)
  • 2
    • 0035452682 scopus 로고    scopus 로고
    • A hybrid methodology for learning belief networks: Benedict
    • 0983.68197 10.1016/S0888-613X(01)00041-X
    • S Acid LM de Campos 2001 A hybrid methodology for learning belief networks: benedict Int J Approx Reason 27 3 235 262 0983.68197 10.1016/S0888-613X(01)00041-X
    • (2001) Int J Approx Reason , vol.27 , Issue.3 , pp. 235-262
    • Acid, S.1    De Campos, L.M.2
  • 3
    • 21244484641 scopus 로고    scopus 로고
    • Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
    • 1056.68142
    • S Acid LM de Campos 2003 Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs J Artif Intell Res 18 445 490 1056.68142
    • (2003) J Artif Intell Res , vol.18 , pp. 445-490
    • Acid, S.1    De Campos, L.M.2
  • 6
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • 0892.68079 10.1023/A:1007421730016
    • J Binder D Koller SJ Russell K Kanazawa 1997 Adaptive probabilistic networks with hidden variables Mach Learn 29 2-3 213 244 0892.68079 10.1023/A:1007421730016
    • (1997) Mach Learn , vol.29 , Issue.23 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.J.3    Kanazawa, K.4
  • 7
    • 0037322292 scopus 로고    scopus 로고
    • Learning Bayesian networks in the space of structures by estimation of distribution algorithms
    • 1028.68162 10.1002/int.10084
    • R Blanco I Inza P Larrañaga 2003 Learning Bayesian networks in the space of structures by estimation of distribution algorithms Int J Intell Syst 18 2 205 220 1028.68162 10.1002/int.10084
    • (2003) Int J Intell Syst , vol.18 , Issue.2 , pp. 205-220
    • Blanco, R.1    Inza, I.2    Larrañaga, P.3
  • 9
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • 10.1109/69.494161
    • W Buntine 1996 A guide to the literature on learning probabilistic networks from data IEEE Trans Knowl Data Eng 8 2 195 210 10.1109/69.494161
    • (1996) IEEE Trans Knowl Data Eng , vol.8 , Issue.2 , pp. 195-210
    • Buntine, W.1
  • 10
    • 26944437287 scopus 로고    scopus 로고
    • Applications of bayesian networks in meteorology
    • Gámez JA, Moral S, Salmerón A (eds) Springer-Verlag
    • Cano R, Sordo C, Gutiérrez JM (2004) Applications of bayesian networks in meteorology. In: Gámez JA, Moral S, Salmerón A (eds) Advances in Bayesian networks. Springer-Verlag, pp 309-327
    • (2004) Advances in Bayesian Networks , pp. 309-327
    • Cano R, S.1
  • 12
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • 10.1162/153244303321897717 1991085
    • DM Chickering 2002 Optimal structure identification with greedy search J Mach Learn Res 3 507 554 10.1162/153244303321897717 1991085
    • (2002) J Mach Learn Res , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 14
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • 0766.68109
    • G Cooper E Herskovits 1992 A Bayesian method for the induction of probabilistic networks from data Mach Learn 9 309 347 0766.68109
    • (1992) Mach Learn , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 17
    • 33750071718 scopus 로고    scopus 로고
    • A scoring function for learning Bayesian networks based on mutual information and conditional independence tests
    • 2326477
    • LM de Campos 2006 A scoring function for learning Bayesian networks based on mutual information and conditional independence tests J Mach Learn Res 7 2149 2187 2326477
    • (2006) J Mach Learn Res , vol.7 , pp. 2149-2187
    • De Campos, L.M.1
  • 19
    • 0036856515 scopus 로고    scopus 로고
    • Ant colony optimization for learning bayesian networks
    • 1033.68091 10.1016/S0888-613X(02)00091-9
    • LM de Campos JM Fernández-Luna JA Gámez JM Puerta 2002 Ant colony optimization for learning bayesian networks Int J Approx Reason 31 3 291 311 1033.68091 10.1016/S0888-613X(02)00091-9
    • (2002) Int J Approx Reason , vol.31 , Issue.3 , pp. 291-311
    • De Campos, L.M.1    Fernández-Luna, J.M.2    Gámez, J.A.3    Puerta, J.M.4
  • 20
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • 10.2307/2279372
    • M Friedman 1937 The use of ranks to avoid the assumption of normality implicit in the analysis of variance J Am Stat Assoc 32 200 675 701 10.2307/2279372
    • (1937) J Am Stat Assoc , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 22
    • 0033707946 scopus 로고    scopus 로고
    • Using bayesian network to analyze expression data
    • 10.1089/106652700750050961
    • N Friedman M Linial I Nachman D Pe'er 2000 Using bayesian network to analyze expression data Comput Biol 7 601 620 10.1089/106652700750050961
    • (2000) Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'Er, D.4
  • 24
    • 0035612908 scopus 로고    scopus 로고
    • Stratified exponential families: Graphical models and model selection
    • 1012.62012 10.1214/aos/1009210550 1863967
    • D Geiger D Heckerman H King C Meek 2001 Stratified exponential families: graphical models and model selection Ann Stat 29 2 505 529 1012.62012 10.1214/aos/1009210550 1863967
    • (2001) Ann Stat , vol.29 , Issue.2 , pp. 505-529
    • Geiger, D.1    Heckerman, D.2    King, H.3    Meek, C.4
  • 25
    • 0000554045 scopus 로고
    • On the choice of a model to fit data from an exponential family
    • 0657.62037 10.1214/aos/1176350709 924875
    • DMA Haughton 1988 On the choice of a model to fit data from an exponential family Ann Stat 16 1 342 355 0657.62037 10.1214/aos/1176350709 924875
    • (1988) Ann Stat , vol.16 , Issue.1 , pp. 342-355
    • Haughton, D.M.A.1
  • 26
    • 4344578226 scopus 로고    scopus 로고
    • Bayesian networks for data mining
    • 10.1023/A:1009730122752
    • D Heckerman 1997 Bayesian networks for data mining Data Min Knowl Disc 1 79 119 10.1023/A:1009730122752
    • (1997) Data Min Knowl Disc , vol.1 , pp. 79-119
    • Heckerman, D.1
  • 27
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • 0831.68096
    • D Heckerman D Geiger DM Chickering 1995 Learning Bayesian networks: the combination of knowledge and statistical data Mach Learn 20 3 197 243 0831.68096
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 28
    • 18244400004 scopus 로고
    • A simple sequential rejective multiple Bonferroni procedures to pairwise multiple comparisons in balanced repeated measures designs
    • 538597
    • S Holm 1979 A simple sequential rejective multiple Bonferroni procedures to pairwise multiple comparisons in balanced repeated measures designs Comput Stat Q 6 219 231 538597
    • (1979) Comput Stat Q , vol.6 , pp. 219-231
    • Holm, S.1
  • 32
    • 0036250059 scopus 로고    scopus 로고
    • The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides
    • 10.1016/S0168-1699(02)00007-8
    • K Kristensen IA Rasmussen 2002 The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides Comput Electron Agric 33 197 217 10.1016/S0168-1699(02)00007-8
    • (2002) Comput Electron Agric , vol.33 , pp. 197-217
    • Kristensen, K.1    Rasmussen, I.A.2
  • 33
    • 0030245966 scopus 로고    scopus 로고
    • Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters
    • 10.1109/34.537345
    • P Larrañaga M Poza Y Yurramendi RH Murga CMH Kuijpers 1996 Structure learning of Bayesian networks by genetic algorithms: a performance analysis of control parameters IEEE Trans Pattern Anal Mach Intell 18 9 912 926 10.1109/34.537345
    • (1996) IEEE Trans Pattern Anal Mach Intell , vol.18 , Issue.9 , pp. 912-926
    • Larrañaga, P.1    Poza, M.2    Yurramendi, Y.3    Murga, R.H.4    Kuijpers, C.M.H.5
  • 39
    • 34249931694 scopus 로고    scopus 로고
    • Towards scalable and data efficient learning of Markov boundaries
    • 1122.68136 10.1016/j.ijar.2006.06.008
    • JM Peña R Nilsson J Björkegren J Tegnér 2007 Towards scalable and data efficient learning of Markov boundaries Int J Approx Reason 45 2 211 232 1122.68136 10.1016/j.ijar.2006.06.008
    • (2007) Int J Approx Reason , vol.45 , Issue.2 , pp. 211-232
    • Peña, J.M.1    Nilsson, R.2    Björkegren, J.3    Tegnér, J.4
  • 40
    • 0002444961 scopus 로고
    • Counting unlabeled acyclic digraphs
    • Springer-Verlag, Berlin
    • Robinson R (1977) Counting unlabeled acyclic digraphs. In: Combinatorial mathematics, vol 622. Springer-Verlag, Berlin, pp 28-43
    • (1977) Combinatorial Mathematics , vol.622 , pp. 28-43
    • Robinson, R.1
  • 41
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • 0379.62005 10.1214/aos/1176344136
    • G Schwarz 1978 Estimating the dimension of a model Ann Stat 6 2 461 464 0379.62005 10.1214/aos/1176344136
    • (1978) Ann Stat , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 45
    • 33746035971 scopus 로고    scopus 로고
    • The max- min hill-climbing bayesian network structure learning algorithm
    • 10.1007/s10994-006-6889-7
    • I Tsamardinos LE Brown CF Aliferis 2006 The max- min hill-climbing bayesian network structure learning algorithm Mach Learn 65 1 31 78 10.1007/s10994-006-6889-7
    • (2006) Mach Learn , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 49
    • 70350314967 scopus 로고    scopus 로고
    • Improving Bayesian network structure learning with mutual information-based node ordering in the k2 algorithm
    • 10.1109/TKDE.2007.190732
    • X WenChen G Anantha X Lin 2008 Improving Bayesian network structure learning with mutual information-based node ordering in the k2 algorithm IEEE Trans Knowl Data Eng 20 5 628 640 10.1109/TKDE.2007.190732
    • (2008) IEEE Trans Knowl Data Eng , vol.20 , Issue.5 , pp. 628-640
    • Wenchen, X.1    Anantha, G.2    Lin, X.3
  • 51
    • 4444383943 scopus 로고    scopus 로고
    • An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach
    • 10.1109/TEVC.2004.830334
    • ML Wong KS Leung 2004 An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach IEEE Trans Evol Comput 8 4 378 404 10.1109/TEVC.2004.830334
    • (2004) IEEE Trans Evol Comput , vol.8 , Issue.4 , pp. 378-404
    • Wong, M.L.1    Leung, K.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.