메뉴 건너뛰기




Volumn 18, Issue 11, 2016, Pages 1196-1207

Activation of the ATR kinase by the RPA-binding protein ETAA1

Author keywords

[No Author keywords available]

Indexed keywords

ATR PROTEIN; CELL PROTEIN; CHECKPOINT KINASE 1; EWING TUMOR ASSOCIATED ANTIGEN 1; HISTONE H2AX; TOPBP1 PROTEIN; UNCLASSIFIED DRUG; ATM PROTEIN; ATR PROTEIN, HUMAN; ATRIP PROTEIN, HUMAN; CARRIER PROTEIN; CELL CYCLE PROTEIN; DNA BINDING PROTEIN; ETAA1 PROTEIN, HUMAN; MEMBRANE ANTIGEN; NUCLEAR PROTEIN; SIGNAL TRANSDUCING ADAPTOR PROTEIN; SINGLE STRANDED DNA; TOPBP1 PROTEIN, HUMAN;

EID: 84990909330     PISSN: 14657392     EISSN: 14764679     Source Type: Journal    
DOI: 10.1038/ncb3422     Document Type: Article
Times cited : (194)

References (61)
  • 1
    • 0035902108 scopus 로고    scopus 로고
    • Genome maintenance mechanisms for preventing cancer
    • Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374 (2001).
    • (2001) Nature , vol.411 , pp. 366-374
    • Hoeijmakers, J.H.1
  • 3
    • 70350504453 scopus 로고    scopus 로고
    • The DNA-damage response in human biology and disease
    • Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071-1078 (2009).
    • (2009) Nature , vol.461 , pp. 1071-1078
    • Jackson, S.P.1    Bartek, J.2
  • 4
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: Making it safe to play with knives
    • Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179-204 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 179-204
    • Ciccia, A.1    Elledge, S.J.2
  • 5
    • 34249947699 scopus 로고    scopus 로고
    • ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
    • Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160-1166 (2007).
    • (2007) Science , vol.316 , pp. 1160-1166
    • Matsuoka, S.1
  • 6
    • 78649938817 scopus 로고    scopus 로고
    • ATM-dependent and-independent dynamics of the nuclear phosphoproteome after DNA damage
    • Bensimon, A. et al. ATM-dependent and-independent dynamics of the nuclear phosphoproteome after DNA damage. Sci. Signal. 3, rs3 (2010).
    • (2010) Sci. Signal. , vol.3 , pp. rs3
    • Bensimon, A.1
  • 7
    • 84860325854 scopus 로고    scopus 로고
    • Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response
    • Beli, P. et al. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol. Cell 46, 212-225 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 212-225
    • Beli, P.1
  • 8
  • 9
    • 17644432403 scopus 로고    scopus 로고
    • Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint
    • Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 14, 1448-1459 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 1448-1459
    • Liu, Q.1
  • 10
    • 0032484084 scopus 로고    scopus 로고
    • Linkage of ATM to cell cycle regulation by the Chk2 protein kinase
    • Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893-1897 (1998).
    • (1998) Science , vol.282 , pp. 1893-1897
    • Matsuoka, S.1    Huang, M.2    Elledge, S.J.3
  • 11
    • 0345073699 scopus 로고    scopus 로고
    • A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome
    • O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat. Genet. 33, 497-501 (2003).
    • (2003) Nat. Genet. , vol.33 , pp. 497-501
    • O'Driscoll, M.1    Ruiz-Perez, V.L.2    Woods, C.G.3    Jeggo, P.A.4    Goodship, J.A.5
  • 12
    • 84875423827 scopus 로고    scopus 로고
    • The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more
    • Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197-210 (2013).
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 197-210
    • Shiloh, Y.1    Ziv, Y.2
  • 13
    • 84891301320 scopus 로고    scopus 로고
    • Causes and consequences of replication stress
    • Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2-9 (2014).
    • (2014) Nat. Cell Biol. , vol.16 , pp. 2-9
    • Zeman, M.K.1    Cimprich, K.A.2
  • 14
    • 47749141560 scopus 로고    scopus 로고
    • ATR: An essential regulator of genome integrity
    • Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616-627 (2008).
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 616-627
    • Cimprich, K.A.1    Cortez, D.2
  • 15
    • 0034102337 scopus 로고    scopus 로고
    • ATR disruption leads to chromosomal fragmentation and early embryonic lethality
    • Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397-402 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 397-402
    • Brown, E.J.1    Baltimore, D.2
  • 16
    • 0034177408 scopus 로고    scopus 로고
    • Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice
    • de Klein, A. et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479-482 (2000).
    • (2000) Curr. Biol. , vol.10 , pp. 479-482
    • De Klein, A.1
  • 17
    • 18244371925 scopus 로고    scopus 로고
    • Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATRdependent checkpoint
    • Byun, T. S., Pacek, M., Yee, M. C., Walter, J. C. & Cimprich, K. A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATRdependent checkpoint. Genes Dev. 19, 1040-1052 (2005).
    • (2005) Genes Dev. , vol.19 , pp. 1040-1052
    • Byun, T.S.1    Pacek, M.2    Yee, M.C.3    Walter, J.C.4    Cimprich, K.A.5
  • 18
    • 0037567268 scopus 로고    scopus 로고
    • Sensing DNA damage through ATRIP recognition of RPAssDNA complexes
    • Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPAssDNA complexes. Science 300, 1542-1548 (2003).
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge, S.J.2
  • 19
    • 0035941021 scopus 로고    scopus 로고
    • ATR and ATRIP: Partners in checkpoint signaling
    • Cortez, D., Guntuku, S., Qin, J. & Elledge, S. J. ATR and ATRIP: partners in checkpoint signaling. Science 294, 1713-1716 (2001).
    • (2001) Science , vol.294 , pp. 1713-1716
    • Cortez, D.1    Guntuku, S.2    Qin, J.3    Elledge, S.J.4
  • 20
    • 34250705797 scopus 로고    scopus 로고
    • The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1
    • Delacroix, S., Wagner, J. M., Kobayashi, M., Yamamoto, K. & Karnitz, L. M. The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev. 21, 1472-1477 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 1472-1477
    • Delacroix, S.1    Wagner, J.M.2    Kobayashi, M.3    Yamamoto, K.4    Karnitz, L.M.5
  • 21
    • 34948889415 scopus 로고    scopus 로고
    • The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR
    • Lee, J., Kumagai, A. & Dunphy, W. G. The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J. Biol. Chem. 282, 28036-28044 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 28036-28044
    • Lee, J.1    Kumagai, A.2    Dunphy, W.G.3
  • 22
    • 79958694525 scopus 로고    scopus 로고
    • A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling
    • Cotta-Ramusino, C. et al. A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science 332, 1313-1317 (2011).
    • (2011) Science , vol.332 , pp. 1313-1317
    • Cotta-Ramusino, C.1
  • 23
    • 84876097735 scopus 로고    scopus 로고
    • A role for the MRN complex in ATR activation via TOPBP1 recruitment
    • Duursma, A. M., Driscoll, R., Elias, J. E. & Cimprich, K. A. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol. Cell 50, 116-122 (2013).
    • (2013) Mol. Cell , vol.50 , pp. 116-122
    • Duursma, A.M.1    Driscoll, R.2    Elias, J.E.3    Cimprich, K.A.4
  • 24
    • 0037080675 scopus 로고    scopus 로고
    • Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin
    • Zou, L., Cortez, D. & Elledge, S. J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16, 198-208 (2002).
    • (2002) Genes Dev. , vol.16 , pp. 198-208
    • Zou, L.1    Cortez, D.2    Elledge, S.J.3
  • 25
    • 3242887431 scopus 로고    scopus 로고
    • Dial 9-1-1 for DNA damage: The Rad9-Hus1-Rad1 (9-1-1) clamp complex
    • Parrilla-Castellar, E. R., Arlander, S. J. & Karnitz, L. Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 3, 1009-1014 (2004).
    • (2004) DNA Repair (Amst) , vol.3 , pp. 1009-1014
    • Parrilla-Castellar, E.R.1    Arlander, S.J.2    Karnitz, L.3
  • 26
    • 33644757806 scopus 로고    scopus 로고
    • TopBP1 activates the ATR-ATRIP complex
    • Kumagai, A., Lee, J., Yoo, H. Y. & Dunphy, W. G. TopBP1 activates the ATR-ATRIP complex. Cell 124, 943-955 (2006).
    • (2006) Cell , vol.124 , pp. 943-955
    • Kumagai, A.1    Lee, J.2    Yoo, H.Y.3    Dunphy, W.G.4
  • 27
    • 44849093460 scopus 로고    scopus 로고
    • TopBP1 activates ATR through ATRIP and a PIKK regulatory domain
    • Mordes, D. A., Glick, G. G., Zhao, R. & Cortez, D. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev. 22, 1478-1489 (2008).
    • (2008) Genes Dev. , vol.22 , pp. 1478-1489
    • Mordes, D.A.1    Glick, G.G.2    Zhao, R.3    Cortez, D.4
  • 28
    • 84884614941 scopus 로고    scopus 로고
    • An essential function for the ATR-activation-domain (AAD) of TopBP1 in mouse development and cellular senescence
    • Zhou, Z. W. et al. An essential function for the ATR-activation-domain (AAD) of TopBP1 in mouse development and cellular senescence. PLoS Genet. 9, e1003702 (2013).
    • (2013) PLoS Genet. , vol.9 , pp. e1003702
    • Zhou, Z.W.1
  • 29
    • 71149093704 scopus 로고    scopus 로고
    • The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms
    • Navadgi-Patil, V. M. & Burgers, P. M. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Mol. Cell 36, 743-753 (2009).
    • (2009) Mol. Cell , vol.36 , pp. 743-753
    • Navadgi-Patil, V.M.1    Burgers, P.M.2
  • 30
    • 84873521523 scopus 로고    scopus 로고
    • Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery
    • Kumar, S. & Burgers, P. M. Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery. Genes Dev. 27, 313-321 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 313-321
    • Kumar, S.1    Burgers, P.M.2
  • 31
    • 84929102368 scopus 로고    scopus 로고
    • Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links
    • Raschle, M. et al. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 348, 1253671 (2015).
    • (2015) Science , vol.348 , pp. 1253671
    • Raschle, M.1
  • 32
    • 30444460757 scopus 로고    scopus 로고
    • Structure and function of ETAA16: A novel cell surface antigen in Ewing's tumours
    • Borowski, A. et al. Structure and function of ETAA16: a novel cell surface antigen in Ewing's tumours. Cancer Immunol. Immunother. 55, 363-374 (2006).
    • (2006) Cancer Immunol. Immunother. , vol.55 , pp. 363-374
    • Borowski, A.1
  • 33
    • 33646117239 scopus 로고    scopus 로고
    • Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks
    • Bekker-Jensen, S. et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 173, 195-206 (2006).
    • (2006) J. Cell Biol. , vol.173 , pp. 195-206
    • Bekker-Jensen, S.1
  • 34
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247-271 (2011).
    • (2011) Annu. Rev. Genet. , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 35
    • 0034721654 scopus 로고    scopus 로고
    • Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA
    • Mer, G. et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103, 449-456 (2000).
    • (2000) Cell , vol.103 , pp. 449-456
    • Mer, G.1
  • 36
    • 70350088521 scopus 로고    scopus 로고
    • The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart
    • Ciccia, A. et al. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev. 23, 2415-2425 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2415-2425
    • Ciccia, A.1
  • 37
    • 34147201111 scopus 로고    scopus 로고
    • The human Tim/Tipin complex coordinates an intra-S checkpoint response to UV that slows replication fork displacement
    • Unsal-Kacmaz, K. et al. The human Tim/Tipin complex coordinates an intra-S checkpoint response to UV that slows replication fork displacement. Mol. Cell Biol. 27, 3131-3142 (2007).
    • (2007) Mol. Cell Biol. , vol.27 , pp. 3131-3142
    • Unsal-Kacmaz, K.1
  • 38
    • 57349143725 scopus 로고    scopus 로고
    • The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling
    • Xu, X. et al. The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling. Mol. Cell Biol. 28, 7345-7353 (2008).
    • (2008) Mol. Cell Biol. , vol.28 , pp. 7345-7353
    • Xu, X.1
  • 40
    • 0035930537 scopus 로고    scopus 로고
    • Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress
    • Ward, I. M. & Chen, J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J. Biol. Chem. 276, 47759-47762 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 47759-47762
    • Ward, I.M.1    Chen, J.2
  • 41
    • 84878548877 scopus 로고    scopus 로고
    • Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1
    • Shiotani, B. et al. Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Rep. 3, 1651-1662 (2013).
    • (2013) Cell Rep. , vol.3 , pp. 1651-1662
    • Shiotani, B.1
  • 42
    • 84889563685 scopus 로고    scopus 로고
    • ATR prohibits replication catastrophe by preventing global exhaustion of RPA
    • Toledo, L. I. et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155, 1088-1103 (2013).
    • (2013) Cell , vol.155 , pp. 1088-1103
    • Toledo, L.I.1
  • 43
    • 84880440332 scopus 로고    scopus 로고
    • ATR phosphorylates SMARCAL1 to prevent replication fork collapse
    • Couch, F. B. et al. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev. 27, 1610-1623 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 1610-1623
    • Couch, F.B.1
  • 44
    • 79952281751 scopus 로고    scopus 로고
    • 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress
    • Lukas, C. et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat. Cell Biol. 13, 243-253 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 243-253
    • Lukas, C.1
  • 45
    • 79958865837 scopus 로고    scopus 로고
    • A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations
    • Toledo, L. I. et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat. Struct. Mol. Biol. 18, 721-727 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 721-727
    • Toledo, L.I.1
  • 46
    • 84990928822 scopus 로고    scopus 로고
    • ETAA1 acts at stalled replication forks to maintain genome integrity
    • Bass, T. E. et al. ETAA1 acts at stalled replication forks to maintain genome integrity. Nat. Cell Biol. http://dx. doi. org/10. 1038/ncb3415 (2016).
    • (2016) Nat. Cell Biol.
    • Bass, T.E.1
  • 48
    • 84925235571 scopus 로고    scopus 로고
    • Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA replication
    • Bastos de Oliveira, F. M. Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA replication. Mol. Cell 57, 1124-1132 (2015).
    • (2015) Mol. Cell , vol.57 , pp. 1124-1132
    • Bastos De Oliveira, F.M.1
  • 49
    • 84887087577 scopus 로고    scopus 로고
    • Targeting ATR in DNA damage response and cancer therapeutics
    • Fokas, E. et al. Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treat. Rev. 40, 109-117 (2014).
    • (2014) Cancer Treat. Rev. , vol.40 , pp. 109-117
    • Fokas, E.1
  • 51
    • 84938289037 scopus 로고    scopus 로고
    • Common variation at 2p13 3, 3q29, 7p13 and 17q25. 1 associated with susceptibility to pancreatic cancer
    • Childs, E. J. et al. Common variation at 2p13. 3, 3q29, 7p13 and 17q25. 1 associated with susceptibility to pancreatic cancer. Nat. Genet. 47, 911-916 (2015).
    • (2015) Nat. Genet. , vol.47 , pp. 911-916
    • Childs, E.J.1
  • 52
    • 84655162046 scopus 로고    scopus 로고
    • Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations
    • Wu, C. et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat. Genet. 44, 62-66 (2012).
    • (2012) Nat. Genet. , vol.44 , pp. 62-66
    • Wu, C.1
  • 53
    • 84907197082 scopus 로고    scopus 로고
    • Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
    • Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteomics 13, 2513-2526 (2014).
    • (2014) Mol. Cell Proteomics , vol.13 , pp. 2513-2526
    • Cox, J.1
  • 54
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116-5121 (2001).
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 55
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 56
    • 84869086918 scopus 로고    scopus 로고
    • DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks
    • Mosbech, A. et al. DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nat. Struct. Mol. Biol. 19, 1084-1092 (2012).
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1084-1092
    • Mosbech, A.1
  • 57
    • 84861948252 scopus 로고    scopus 로고
    • Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks
    • Poulsen, M., Lukas, C., Lukas, J., Bekker-Jensen, S. & Mailand, N. Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J. Cell Biol. 197, 189-199 (2012).
    • (2012) J. Cell Biol. , vol.197 , pp. 189-199
    • Poulsen, M.1    Lukas, C.2    Lukas, J.3    Bekker-Jensen, S.4    Mailand, N.5
  • 58
    • 34347230544 scopus 로고    scopus 로고
    • Sulforhodamine B colorimetric assay for cytotoxicity screening
    • Vichai, V. & Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 1, 1112-1116 (2006).
    • (2006) Nat. Protoc. , vol.1 , pp. 1112-1116
    • Vichai, V.1    Kirtikara, K.2
  • 59
    • 34247396011 scopus 로고    scopus 로고
    • A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC)
    • Ong, S. E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1, 2650-2660 (2006).
    • (2006) Nat. Protoc , vol.1 , pp. 2650-2660
    • Ong, S.E.1    Mann, M.2
  • 60
    • 84941076117 scopus 로고    scopus 로고
    • High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics
    • Humphrey, S. J., Azimifar, S. B. & Mann, M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat. Biotechnol. 33, 990-995 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 990-995
    • Humphrey, S.J.1    Azimifar, S.B.2    Mann, M.3
  • 61
    • 84891796097 scopus 로고    scopus 로고
    • ProteomeXchange provides globally coordinated proteomics data submission and dissemination
    • Vizcaino, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223-226 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 223-226
    • Vizcaino, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.