-
1
-
-
77951098230
-
Targeting mitochondrial dysfunction in neurodegenerative disease: Part II
-
Burchell VS, Gandhi S, Deas E, Wood NW, Abramov AY, Plun-Favreau H. Targeting mitochondrial dysfunction in neurodegenerative disease: part II. Expert Opin Ther Targets 2010; 14: 497-511.
-
(2010)
Expert Opin Ther Targets
, vol.14
, pp. 497-511
-
-
Burchell, V.S.1
Gandhi, S.2
Deas, E.3
Wood, N.W.4
Abramov, A.Y.5
Plun-Favreau, H.6
-
3
-
-
84857981316
-
Toxin models of mitochondrial dysfunction in Parkinson's disease
-
Martinez TN, Greenamyre JT. Toxin models of mitochondrial dysfunction in Parkinson's disease. Antioxid Redox Signal 2012; 16: 920-934.
-
(2012)
Antioxid Redox Signal
, vol.16
, pp. 920-934
-
-
Martinez, T.N.1
Greenamyre, J.T.2
-
4
-
-
79952133911
-
Toxin-induced, genetic animal models of Parkinson's disease
-
Hisahara S, Shimohama S. Toxin-induced, genetic animal models of Parkinson's disease. Parkinsons Dis 2010; 2011: 951709.
-
(2010)
Parkinsons Dis
, vol.2011
, pp. 951709
-
-
Hisahara, S.1
Shimohama, S.2
-
5
-
-
54249094205
-
The coenzyme Q10 status of the brain regions of Parkinson's disease patients
-
Hargreaves IP, Lane A, Sleiman PMA. The coenzyme Q10 status of the brain regions of Parkinson's disease patients. Neurosci Lett 2008; 447: 17-19.
-
(2008)
Neurosci Lett
, vol.447
, pp. 17-19
-
-
Hargreaves, I.P.1
Lane, A.2
Sleiman, P.M.A.3
-
6
-
-
41749104745
-
Complex i deficiency in Parkinson's disease frontal cortex
-
Parker WD, Parks JK, Swerdlow RH. Complex I deficiency in Parkinson's disease frontal cortex. Brain Res 2008; 1189: 215-218.
-
(2008)
Brain Res
, vol.1189
, pp. 215
-
-
Parker, W.D.1
Parks, J.K.2
Swerdlow, R.H.3
-
7
-
-
37049004489
-
Mitochondria in the aetiology, pathogenesis of Parkinson's disease
-
Schapira AH V. Mitochondria in the aetiology, pathogenesis of Parkinson's disease. Lancet Neurol 2008; 7: 97-109.
-
(2008)
Lancet Neurol
, vol.7
, pp. 97-109
-
-
Schapira, A.H.V.1
-
8
-
-
80054765940
-
Bioenergetic consequences of PINK1 mutations in Parkinson disease
-
Abramov AY, Gegg M, Grunewald A, Wood NW, Klein C, Schapira AHV. Bioenergetic consequences of PINK1 mutations in Parkinson disease. PLoS One 2011; 6: e25622.
-
(2011)
PLoS One
, vol.6
, pp. e25622
-
-
Abramov, A.Y.1
Gegg, M.2
Grunewald, A.3
Wood, N.W.4
Klein, C.5
Schapira, A.H.V.6
-
9
-
-
84904505245
-
Reactive oxygen species-mediated DJ-1 monomerization modulates intracellular trafficking involving karyopherin ?2
-
Björkblom B, Maple-Grødem J, Puno MR, Odell M, Larsen JP, Møller SG. Reactive oxygen species-mediated DJ-1 monomerization modulates intracellular trafficking involving karyopherin ?2. Mol Cell Biol 2014; 34: 3024-3040.
-
(2014)
Mol Cell Biol
, vol.34
, pp. 3024-3040
-
-
Björkblom, B.1
Maple-Grødem, J.2
Puno, M.R.3
Odell, M.4
Larsen, J.P.5
Møller, S.G.6
-
10
-
-
84855664067
-
Phosphorylation of HtrA2 by cyclin-dependent kinase-5 is important for mitochondrial function
-
Fitzgerald JC, Camprubi MD, Dunn L, Wu H-C, Ip NY, Kruger R et al. Phosphorylation of HtrA2 by cyclin-dependent kinase-5 is important for mitochondrial function. Cell Death Differ 2012; 19: 257-266.
-
(2012)
Cell Death Differ
, vol.19
, pp. 257-266
-
-
Fitzgerald, J.C.1
Camprubi, M.D.2
Dunn, L.3
Wu, H.-C.4
Ip, N.Y.5
Kruger, R.6
-
11
-
-
84921369563
-
The roles of PINK1, parkin, mitochondrial fidelity in Parkinson's disease
-
Pickrell AM, Youle RJ. The roles of PINK1, parkin, mitochondrial fidelity in Parkinson's disease. Neuron 2015; 85: 257-273.
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
12
-
-
59649088353
-
FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome
-
Di Fonzo A, Dekker MCJ, Montagna P, Baruzzi A, Yonova EH, Correia Guedes L et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 2009; 72: 240-245.
-
(2009)
Neurology
, vol.72
, pp. 240-245
-
-
Di Fonzo, A.1
Dekker, M.C.J.2
Montagna, P.3
Baruzzi, A.4
Yonova, E.H.5
Correia Guedes, L.6
-
13
-
-
0030662523
-
F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex
-
Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 1997; 91: 209-219.
-
(1997)
Cell
, vol.91
, pp. 209-219
-
-
Skowyra, D.1
Craig, K.L.2
Tyers, M.3
Elledge, S.J.4
Harper, J.W.5
-
14
-
-
0030602813
-
SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box
-
Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 1996; 86: 263-274.
-
(1996)
Cell
, vol.86
, pp. 263-274
-
-
Bai, C.1
Sen, P.2
Hofmann, K.3
Ma, L.4
Goebl, M.5
Harper, J.W.6
-
15
-
-
84897049814
-
Beyond ubiquitination: The atypical functions of Fbxo7, other F-box proteins
-
Nelson DE, Randle SJ, Laman H. Beyond ubiquitination: the atypical functions of Fbxo7, other F-box proteins. Open Biol 2013; 3: 130131.
-
(2013)
Open Biol
, vol.3
, pp. 130131
-
-
Nelson, D.E.1
Randle, S.J.2
Laman, H.3
-
16
-
-
84883462430
-
The Parkinson's disease-linked proteins Fbxo7, Parkin interact to mediate mitophagy
-
Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH et al. The Parkinson's disease-linked proteins Fbxo7, Parkin interact to mediate mitophagy. Nat Neurosci 2013; 16: 1257-1265.
-
(2013)
Nat Neurosci
, vol.16
, pp. 1257-1265
-
-
Burchell, V.S.1
Nelson, D.E.2
Sanchez-Martinez, A.3
Delgado-Camprubi, M.4
Ivatt, R.M.5
Pogson, J.H.6
-
17
-
-
38649092421
-
Poly(ADP-ribose)polymerase 1 (PARP-1), postischemic brain damage
-
Moroni F. Poly(ADP-ribose)polymerase 1 (PARP-1), postischemic brain damage. Curr Opin Pharmacol 2008; 8: 96-103.
-
(2008)
Curr Opin Pharmacol
, vol.8
, pp. 96-103
-
-
Moroni, F.1
-
18
-
-
18544381071
-
Introduction to poly(ADP-ribose) metabolism
-
Diefenbach J, Bürkle A. Introduction to poly(ADP-ribose) metabolism. Cell Mol Life Sci 2005; 62: 721-730.
-
(2005)
Cell Mol Life Sci
, vol.62
, pp. 721-730
-
-
Diefenbach, J.1
Bürkle, A.2
-
19
-
-
79957871035
-
Beta-amyloid activates PARP causing astrocytic metabolic failure, neuronal death
-
Abeti R, Abramov AY, Duchen MR. Beta-amyloid activates PARP causing astrocytic metabolic failure, neuronal death. Brain 2011; 134(Pt 6): 1658-1672.
-
(2011)
Brain
, vol.134
, pp. 1658-1672
-
-
Abeti, R.1
Abramov, A.Y.2
Duchen, M.R.3
-
20
-
-
0037111170
-
Oxidative stress, reduced antioxidant defenses in peripheral cells from familial Alzheimer's patients
-
Cecchi C, Fiorillo C, Sorbi S, Latorraca S, Nacmias B, Bagnoli S et al. Oxidative stress, reduced antioxidant defenses in peripheral cells from familial Alzheimer's patients. Free Radic Biol Med 2002; 33: 1372-1379.
-
(2002)
Free Radic Biol Med
, vol.33
, pp. 1372-1379
-
-
Cecchi, C.1
Fiorillo, C.2
Sorbi, S.3
Latorraca, S.4
Nacmias, B.5
Bagnoli, S.6
-
21
-
-
0032901904
-
Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease
-
Love S, Barber R, Wilcock GK. Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. Brain 1999; 122(Pt 2): 247-253.
-
(1999)
Brain
, vol.122
, pp. 247-253
-
-
Love, S.1
Barber, R.2
Wilcock, G.K.3
-
22
-
-
46349104861
-
Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity
-
Abramov AY, Duchen MR. Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim Biophys Acta 2008; 1777: 953-964.
-
(2008)
Biochim Biophys Acta
, vol.1777
, pp. 953-964
-
-
Abramov, A.Y.1
Duchen, M.R.2
-
23
-
-
37249047093
-
Ca2+-dependent generation of mitochondrial reactive oxygen species serves as a signal for poly(ADP-ribose) polymerase-1 activation during glutamate excitotoxicity
-
Duan Y, Gross RA, Sheu S-S. Ca2+-dependent generation of mitochondrial reactive oxygen species serves as a signal for poly(ADP-ribose) polymerase-1 activation during glutamate excitotoxicity. J Physiol 2007; 585(Pt 3): 741-758.
-
(2007)
J Physiol
, vol.585
, pp. 741-758
-
-
Duan, Y.1
Gross, R.A.2
Sheu, S.-S.3
-
24
-
-
79953180902
-
Assessing mitochondrial dysfunction in cells
-
Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J 2011; 435: 297-312.
-
(2011)
Biochem J
, vol.435
, pp. 297-312
-
-
Brand, M.D.1
Nicholls, D.G.2
-
25
-
-
34447628890
-
Coupling of rotation, catalysis in F(1)-ATPase revealed by single-molecule imaging, manipulation
-
Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H et al. Coupling of rotation, catalysis in F(1)-ATPase revealed by single-molecule imaging, manipulation. Cell 2007; 130: 309-321.
-
(2007)
Cell
, vol.130
, pp. 309-321
-
-
Adachi, K.1
Oiwa, K.2
Nishizaka, T.3
Furuike, S.4
Noji, H.5
Itoh, H.6
-
26
-
-
84863474422
-
Mitochondrial ATP synthase: Architecture, function, pathology
-
Jonckheere AI, Smeitink JAM, Rodenburg RJT. Mitochondrial ATP synthase: architecture, function, pathology. J Inherit Metab Dis 2012; 35: 211-225.
-
(2012)
J Inherit Metab Dis
, vol.35
, pp. 211-225
-
-
Jonckheere, A.I.1
Smeitink, J.A.M.2
Rodenburg, R.J.T.3
-
27
-
-
84885292221
-
Implications of enzyme deficiencies on mitochondrial energy metabolism, reactive oxygen species formation of neurons involved in rotenoneinduced Parkinson's disease: A model-based analysis
-
Berndt N, Holzhütter H-G, Bulik S. Implications of enzyme deficiencies on mitochondrial energy metabolism, reactive oxygen species formation of neurons involved in rotenoneinduced Parkinson's disease: a model-based analysis. FEBS J 2013; 280: 5080-5093.
-
(2013)
FEBS J
, vol.280
, pp. 5080-5093
-
-
Berndt, N.1
Holzhütter, H.-G.2
Bulik, S.3
-
28
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417: 1-13.
-
(2009)
Biochem J
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
29
-
-
1542318096
-
Initiation of neuronal damage by complex i deficiency, oxidative stress in Parkinson's disease
-
Tretter L, Sipos I, Adam-Vizi V. Initiation of neuronal damage by complex I deficiency, oxidative stress in Parkinson's disease. Neurochem Res 2004; 29: 569-577.
-
(2004)
Neurochem Res
, vol.29
, pp. 569-577
-
-
Tretter, L.1
Sipos, I.2
Adam-Vizi, V.3
-
30
-
-
84958598026
-
Measurement of mitochondrial NADH, FAD autofluorescence in live cells
-
Bartolomé F, Abramov AY. Measurement of mitochondrial NADH, FAD autofluorescence in live cells. Methods Mol Biol 2015; 1264: 263-270.
-
(2015)
Methods Mol Biol
, vol.1264
, pp. 263-270
-
-
Bartolomé, F.1
Abramov, A.Y.2
-
31
-
-
61649088435
-
PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death
-
Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K et al. PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 2009; 33: 627-638.
-
(2009)
Mol Cell
, vol.33
, pp. 627-638
-
-
Gandhi, S.1
Wood-Kaczmar, A.2
Yao, Z.3
Plun-Favreau, H.4
Deas, E.5
Klupsch, K.6
-
32
-
-
77953631698
-
The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways
-
Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010; 31: 194-223.
-
(2010)
Endocr Rev
, vol.31
, pp. 194-223
-
-
Houtkooper, R.H.1
Cantó, C.2
Wanders, R.J.3
Auwerx, J.4
-
33
-
-
77649133016
-
NAD+ depletion is necessary, sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death
-
Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA. NAD+ depletion is necessary, sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci 2010; 30: 2967-2978.
-
(2010)
J Neurosci
, vol.30
, pp. 2967-2978
-
-
Alano, C.C.1
Garnier, P.2
Ying, W.3
Higashi, Y.4
Kauppinen, T.M.5
Swanson, R.A.6
-
34
-
-
84865731753
-
The role of PARP-1, PARP-2 enzymes in metabolic regulation, disease
-
Bai P, Cantó C. The role of PARP-1, PARP-2 enzymes in metabolic regulation, disease. Cell Metab 2012; 16: 290-295.
-
(2012)
Cell Metab
, vol.16
, pp. 290-295
-
-
Bai, P.1
Cantó, C.2
-
35
-
-
84884702166
-
Cellular NAD depletion, decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro
-
Wang S, Yang X, Lin Y, Qiu X, Li H, Zhao X et al. Cellular NAD depletion, decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro. Brain Res 2013; 1535: 14-23.
-
(2013)
Brain Res
, vol.1535
, pp. 14-23
-
-
Wang, S.1
Yang, X.2
Lin, Y.3
Qiu, X.4
Li, H.5
Zhao, X.6
-
36
-
-
52449091282
-
Cellular NAD replenishment confers marked neuroprotection against ischemic cell death: Role of enhanced DNA repair
-
Wang S, Xing Z, Vosler PS, Yin H, Li W, Zhang F et al. Cellular NAD replenishment confers marked neuroprotection against ischemic cell death: role of enhanced DNA repair. Stroke 2008; 39: 2587-2595.
-
(2008)
Stroke
, vol.39
, pp. 2587-2595
-
-
Wang, S.1
Xing, Z.2
Vosler, P.S.3
Yin, H.4
Li, W.5
Zhang, F.6
-
37
-
-
84871615066
-
PARP-1 inhibitors DPQ, PJ-34 negatively modulate proinflammatory commitment of human glioblastoma cells
-
Scalia M, Satriano C, Greca R, Stella AMG, Rizzarelli E, Spina-Purrello V. PARP-1 inhibitors DPQ, PJ-34 negatively modulate proinflammatory commitment of human glioblastoma cells. Neurochem Res 2013; 38: 50-58.
-
(2013)
Neurochem Res
, vol.38
, pp. 50-58
-
-
Scalia, M.1
Satriano, C.2
Greca, R.3
Stella, A.M.G.4
Rizzarelli, E.5
Spina-Purrello, V.6
-
38
-
-
49549083301
-
Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNKmediated AIF translocation
-
Song Z-F, Ji X-P, Li X-X, Wang S-J, Wang S-H, Zhang Y. Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNKmediated AIF translocation. J Cell Mol Med 2008; 12: 1220-1228.
-
(2008)
J Cell Mol Med
, vol.12
, pp. 1220-1228
-
-
Song, Z.-F.1
Ji, X.-P.2
Li, X.-X.3
Wang, S.-J.4
Wang, S.-H.5
Zhang, Y.6
-
39
-
-
84894369735
-
PARP-1 inhibitor, DPQ, attenuates LPS-induced acute lung injury through inhibiting NF-?B-mediated inflammatory response
-
Wang G, Huang X, Li Y, Guo K, Ning P, Zhang Y. PARP-1 inhibitor, DPQ, attenuates LPS-induced acute lung injury through inhibiting NF-?B-mediated inflammatory response. PLoS One 2013; 8: e79757.
-
(2013)
PLoS One
, vol.8
, pp. e79757
-
-
Wang, G.1
Huang, X.2
Li, Y.3
Guo, K.4
Ning, P.5
Zhang, Y.6
-
40
-
-
76749154427
-
Impaired mitochondrial bioenergetics determines glutamateinduced delayed calcium deregulation in neurons
-
Abramov AY, Duchen MR. Impaired mitochondrial bioenergetics determines glutamateinduced delayed calcium deregulation in neurons. Biochim Biophys Acta 2010; 1800: 297-304.
-
(2010)
Biochim Biophys Acta
, vol.1800
, pp. 297-304
-
-
Abramov, A.Y.1
Duchen, M.R.2
-
41
-
-
84863455932
-
HtrA2 deficiency causes mitochondrial uncoupling through the F1F1-ATP synthase, consequent ATP depletion
-
Plun-Favreau H, Burchell VS, Holmström KM, Yao Z, Deas E, Cain K et al. HtrA2 deficiency causes mitochondrial uncoupling through the F1F1-ATP synthase, consequent ATP depletion. Cell Death Dis 2012; 3: e335.
-
(2012)
Cell Death Dis
, vol.3
, pp. e335
-
-
Plun-Favreau, H.1
Burchell, V.S.2
Holmström, K.M.3
Yao, Z.4
Deas, E.5
Cain, K.6
-
42
-
-
0024390719
-
Mitochondrial complex i deficiency in Parkinson's disease
-
Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1989; 1: 1269.
-
(1989)
Lancet
, vol.1
, pp. 1269
-
-
Schapira, A.H.1
Cooper, J.M.2
Dexter, D.3
Jenner, P.4
Clark, J.B.5
Marsden, C.D.6
-
43
-
-
84884902975
-
Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss
-
Lee Y, Karuppagounder SS, Shin J-H, Lee Y-I, Ko HS, Swing D et al. Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat Neurosci 2013; 16: 1392-1400.
-
(2013)
Nat Neurosci
, vol.16
, pp. 1392-1400
-
-
Lee, Y.1
Karuppagounder, S.S.2
Shin, J.-H.3
Lee, Y.-I.4
Ko, H.S.5
Swing, D.6
-
44
-
-
84927930923
-
PARP-1 involvement in neurodegeneration: A focus on Alzheimer's, Parkinson's diseases
-
Martire S, Mosca L, d'Erme M. PARP-1 involvement in neurodegeneration: A focus on Alzheimer's, Parkinson's diseases. Mech Ageing Dev 2015; 146-148C: 53-64.
-
(2015)
Mech Ageing Dev
, vol.146-148 C
, pp. 53-64
-
-
Martire, S.1
Mosca, L.2
D'Erme, M.3
-
45
-
-
34247549725
-
Pharmacological inhibition of PARP-1 reduces alpha-synuclein-,MPP+-induced cytotoxicity in Parkinson's disease in vitro models
-
Outeiro TF, Grammatopoulos TN, Altmann S, Amore A, Standaert DG, Hyman BT et al. Pharmacological inhibition of PARP-1 reduces alpha-synuclein-, MPP+-induced cytotoxicity in Parkinson's disease in vitro models. Biochem Biophys Res Commun 2007; 357: 596-602.
-
(2007)
Biochem Biophys Res Commun
, vol.357
, pp. 596-602
-
-
Outeiro, T.F.1
Grammatopoulos, T.N.2
Altmann, S.3
Amore, A.4
Standaert, D.G.5
Hyman, B.T.6
-
46
-
-
4043066518
-
Mitochondrial-to-nuclear translocation of apoptosis-inducing factor in cardiac myocytes during oxidant stress: Potential role of poly (ADP-ribose) polymerase-1
-
Chen M, Zsengellér Z, Xiao C-Y, Szabó C. Mitochondrial-to-nuclear translocation of apoptosis-inducing factor in cardiac myocytes during oxidant stress: potential role of poly (ADP-ribose) polymerase-1. Cardiovasc Res 2004; 63: 682-688.
-
(2004)
Cardiovasc Res
, vol.63
, pp. 682-688
-
-
Chen, M.1
Zsengellér, Z.2
Xiao, C.-Y.3
Szabó, C.4
-
47
-
-
0037067317
-
Mediation of poly (ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor
-
Yu S-W, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ et al. Mediation of poly (ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002; 297: 259-263.
-
(2002)
Science
, vol.297
, pp. 259-263
-
-
Yu, S.-W.1
Wang, H.2
Poitras, M.F.3
Coombs, C.4
Bowers, W.J.5
Federoff, H.J.6
-
48
-
-
0041573041
-
NAD+ repletion prevents PARP-1-induced glycolytic blockade, cell death in cultured mouse astrocytes
-
Ying W, Garnier P, Swanson RA. NAD+ repletion prevents PARP-1-induced glycolytic blockade, cell death in cultured mouse astrocytes. Biochem Biophys Res Commun 2003; 308: 809-813.
-
(2003)
Biochem Biophys Res Commun
, vol.308
, pp. 809-813
-
-
Ying, W.1
Garnier, P.2
Swanson, R.A.3
-
49
-
-
84904300961
-
Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis
-
Andrabi SA, Umanah GKE, Chang C, Stevens DA, Karuppagounder SS, Gagné J-P et al. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc Natl Acad Sci USA 2014; 111: 10209-10214.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 10209-10214
-
-
Andrabi, S.A.1
Umanah, G.K.E.2
Chang, C.3
Stevens, D.A.4
Karuppagounder, S.S.5
Gagné, J.-P.6
-
50
-
-
84907405599
-
ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD(+) depletion
-
Fouquerel E, Goellner EM, Yu Z, Gagné J-P, Barbi de Moura M, Feinstein T et al. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD(+) depletion. Cell Rep 2014; 8: 1819-1831.
-
(2014)
Cell Rep
, vol.8
, pp. 1819-1831
-
-
Fouquerel, E.1
Goellner, E.M.2
Yu, Z.3
Gagné, J.-P.4
Barbi De Moura, M.5
Feinstein, T.6
-
51
-
-
84898143711
-
Induction of mitochondrial dysfunction by poly(ADPribose) polymer: Implication for neuronal cell death
-
Baek S-H, Bae O-N, Kim E-K, Yu S-W. Induction of mitochondrial dysfunction by poly(ADPribose) polymer: implication for neuronal cell death. Mol Cell 2013; 36: 258-266.
-
(2013)
Mol Cell
, vol.36
, pp. 258-266
-
-
Baek, S.-H.1
Bae, O.-N.2
Kim, E.-K.3
Yu, S.-W.4
-
52
-
-
37849013404
-
Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix
-
Niere M, Kernstock S, Koch-Nolte F, Ziegler M. Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol 2008; 28: 814-824.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 814-824
-
-
Niere, M.1
Kernstock, S.2
Koch-Nolte, F.3
Ziegler, M.4
-
53
-
-
33845399894
-
Resveratrol improves mitochondrial function, protects against metabolic disease by activating SIRT1, PGC-1alpha
-
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F et al. Resveratrol improves mitochondrial function, protects against metabolic disease by activating SIRT1, PGC-1alpha. Cell 2006; 127: 1109-1122.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
Daussin, F.6
-
54
-
-
41549138483
-
A role for the NADdependent deacetylase Sirt1 in the regulation of autophagy
-
Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE et al. A role for the NADdependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105: 3374-3379.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 3374-3379
-
-
Lee, I.H.1
Cao, L.2
Mostoslavsky, R.3
Lombard, D.B.4
Liu, J.5
Bruns, N.E.6
-
55
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303: 2011-2015.
-
(2004)
Science
, vol.303
, pp. 2011-2015
-
-
Brunet, A.1
Sweeney, L.B.2
Sturgill, J.F.3
Chua, K.F.4
Greer, P.L.5
Lin, Y.6
-
56
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
Ahn B-H, Kim H-S, Song S, Lee IH, Liu J, Vassilopoulos A et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105: 14447-14452.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 14447-14452
-
-
Ahn, B.-H.1
Kim, H.-S.2
Song, S.3
Lee, I.H.4
Liu, J.5
Vassilopoulos, A.6
-
57
-
-
80051716282
-
Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
-
Finley LWS, Haas W, Desquiret-Dumas V, Wallace DC, Procaccio V, Gygi SP et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 2011; 6: e23295.
-
(2011)
PLoS One
, vol.6
, pp. e23295
-
-
Finley, L.W.S.1
Haas, W.2
Desquiret-Dumas, V.3
Wallace, D.C.4
Procaccio, V.5
Gygi, S.P.6
-
58
-
-
84907211012
-
Hexokinase II binding to Mitochondria is Necessary for Kupffer cell Activation, is Potentiated by Ethanol Exposure
-
Shulga N, Pastorino JG. Hexokinase II binding to Mitochondria is Necessary for Kupffer cell Activation, is Potentiated by Ethanol Exposure. J Biol Chem 2014; 289: 26213-2.
-
(2014)
J Biol Chem
, vol.289
, pp. 26213-26222
-
-
Shulga, N.1
Pastorino, J.G.2
-
59
-
-
83455206803
-
Targeting sirtuin 1 to improve metabolism: All you need is NAD(+)
-
Cantó C, Auwerx J. Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)? Pharmacol Rev 2012; 64: 166-187.
-
(2012)
Pharmacol Rev
, vol.64
, pp. 166-187
-
-
Cantó, C.1
Auwerx, J.2
|