메뉴 건너뛰기




Volumn 33, Issue , 2014, Pages 841-849

Learning structured models with the AUC loss and its generalizations

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 84955475233     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (15)

References (29)
  • 2
    • 79952402158 scopus 로고    scopus 로고
    • Supervised random walks: Predicting and recommending links in social networks
    • ACM
    • L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending links in social networks. In WSDM, pages 635-644. ACM, 2011.
    • (2011) WSDM , pp. 635-644
    • Backstrom, L.1    Leskovec, J.2
  • 5
    • 84858770497 scopus 로고    scopus 로고
    • Tighter bounds for structured estimation
    • O. Chapelle, C. B. Do, C. H. Teo, Q. V. Le, and A. J. Smola. Tighter bounds for structured estimation. In NIPS, pages 281-288, 2008.
    • (2008) NIPS , pp. 281-288
    • Chapelle, O.1    Do, C.B.2    Teo, C.H.3    Le, Q.V.4    Smola, A.J.5
  • 7
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • T. Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861-874, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 8
    • 1942514832 scopus 로고    scopus 로고
    • Learning decision trees using the area under the roc curve
    • C. Ferri, P. Flach, and J. Hernández-Orallo. Learning decision trees using the area under the roc curve. In ICML, Volume 2, pages 139-146, 2002.
    • (2002) ICML , vol.2 , pp. 139-146
    • Ferri, C.1    Flach, P.2    Hernández-Orallo, J.3
  • 9
    • 56449113929 scopus 로고    scopus 로고
    • Training structural svms when exact inference is intractable
    • ACM
    • T. Finley and T. Joachims. Training structural svms when exact inference is intractable. In ICML, pages 304-311. ACM, 2008.
    • (2008) ICML , pp. 304-311
    • Finley, T.1    Joachims, T.2
  • 10
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the roc curve for multiple class classification problems
    • D. J. Hand and R. J. Till. A simple generalisation of the area under the roc curve for multiple class classification problems. Machine Learning, 45(2):171-186, 2001.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 12
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • ACM
    • T. Joachims. A support vector method for multivariate performance measures. In ICML, pages 377-384. ACM, 2005.
    • (2005) ICML , pp. 377-384
    • Joachims, T.1
  • 13
    • 84880570692 scopus 로고    scopus 로고
    • Block-coordinate frank-wolfe optimization for structural SVMs
    • S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-Wolfe optimization for structural SVMs. In ICML, pages 53-61, 2013.
    • (2013) ICML , pp. 53-61
    • Lacoste-Julien, S.1    Jaggi, M.2    Schmidt, M.3    Pletscher, P.4
  • 14
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289, 2001.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 16
    • 77956192510 scopus 로고    scopus 로고
    • New perspectives and methods in link prediction
    • ACM
    • R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla. New perspectives and methods in link prediction. In KDD, pages 243-252. ACM, 2010.
    • (2010) KDD , pp. 243-252
    • Lichtenwalter, R.N.1    Lussier, J.T.2    Chawla, N.V.3
  • 19
    • 0018079655 scopus 로고
    • Basic principles of roc analysis
    • Elsevier
    • C. E. Metz. Basic principles of roc analysis. In Seminars in nuclear medicine, Volume 8, pages 283-298. Elsevier, 1978.
    • (1978) Seminars in Nuclear Medicine , vol.8 , pp. 283-298
    • Metz, C.E.1
  • 20
    • 84897515691 scopus 로고    scopus 로고
    • A structural SVM based approach for optimizing partial auc
    • H. Narasimhan and S. Agarwal. A structural SVM based approach for optimizing partial auc. In ICML, pages 516-524, 2013.
    • (2013) ICML , pp. 516-524
    • Narasimhan, H.1    Agarwal, S.2
  • 21
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
    • F. Provost, T. Fawcett, et al Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In KDD, pages 43-48, 1997.
    • (1997) KDD , pp. 43-48
    • Provost, F.1    Fawcett, T.2
  • 22
    • 0028483915 scopus 로고
    • Finding the MAPs for belief networks is NP-hard
    • Y. Shimony. Finding the MAPs for belief networks is NP-hard. Art. Intell., 68(2):399-410, 1994.
    • (1994) Art. Intell. , vol.68 , Issue.2 , pp. 399-410
    • Shimony, Y.1
  • 23
    • 0000939953 scopus 로고    scopus 로고
    • Convex analysis approach to dc programming: Theory, algorithms and applications
    • P. D. Tao and L. T. H. An. Convex analysis approach to dc programming: theory, algorithms and applications. Acta Mathematica Vietnamica, 22(1):289-355, 1997.
    • (1997) Acta Mathematica Vietnamica , vol.22 , Issue.1 , pp. 289-355
    • Tao, P.D.1    An, L.T.H.2
  • 24
    • 84877736193 scopus 로고    scopus 로고
    • Structured output learning with high order loss functions
    • D. Tarlow and R. Zemel. Structured output learning with high order loss functions. In AISTATS, 2012.
    • (2012) AISTATS
    • Tarlow, D.1    Zemel, R.2
  • 25
    • 84868316423 scopus 로고    scopus 로고
    • Hop-map: Efficient message passing with high order potentials
    • D. Tarlow, I. Givoni, and R. Zemel. Hop-map: Efficient message passing with high order potentials. In AISTATS, 2010.
    • (2010) AISTATS
    • Tarlow, D.1    Givoni, I.2    Zemel, R.3
  • 26
    • 14344253870 scopus 로고    scopus 로고
    • Max-margin Markov networks
    • MIT Press
    • B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In NIPS. MIT Press, 2003.
    • (2003) NIPS
    • Taskar, B.1    Guestrin, C.2    Koller, D.3
  • 27
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 28
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 29
    • 84885965057 scopus 로고    scopus 로고
    • Latent structured ranking
    • J. Weston and J. Blitzer. Latent structured ranking. In UAI, pages 903-913, 2012.
    • (2012) UAI , pp. 903-913
    • Weston, J.1    Blitzer, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.