메뉴 건너뛰기




Volumn 4702 LNAI, Issue , 2007, Pages 42-53

Efficient AUC optimization for classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTATIONAL COMPLEXITY; OPTIMIZATION; POLYNOMIAL APPROXIMATION;

EID: 38049177755     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-74976-9_8     Document Type: Conference Paper
Times cited : (134)

References (10)
  • 2
    • 0031191630 scopus 로고    scopus 로고
    • Use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley, A.P.: Use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145-1159 (1997)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 5
    • 1942514832 scopus 로고    scopus 로고
    • Learning decision trees using the area under the ROC curve
    • Ferri, C., Flach, P., Hernandez-Orallo, J.: Learning decision trees using the area under the ROC curve. In: ICML, pp. 139-146 (2002)
    • (2002) ICML , pp. 139-146
    • Ferri, C.1    Flach, P.2    Hernandez-Orallo, J.3
  • 6
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29-36 (1982)
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 7
    • 38049154382 scopus 로고    scopus 로고
    • Herschtal, A., Raskutti, B.: Optimising area under the roc curve using gradient descent. In: ICML, pp. 49-56. ACM Press, New York (2004)
    • Herschtal, A., Raskutti, B.: Optimising area under the roc curve using gradient descent. In: ICML, pp. 49-56. ACM Press, New York (2004)
  • 9
    • 31844446804 scopus 로고    scopus 로고
    • Joachims, T.: A support vector method for multivariate performance measures. In: ICML (2005)
    • Joachims, T.: A support vector method for multivariate performance measures. In: ICML (2005)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.