메뉴 건너뛰기




Volumn , Issue PART 1, 2013, Pages 516-524

A structural SVM based approach for optimizing partial AUC

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BIOMETRICS; COMBINATORIAL OPTIMIZATION; DIAGNOSIS; LEARNING SYSTEMS;

EID: 84897515691     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (76)

References (30)
  • 1
    • 84880083510 scopus 로고    scopus 로고
    • The Infinite Push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list
    • Agarwal, S. The Infinite Push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list. In Proceedings of the SIAM International Conference on Data Mining, 2011.
    • Proceedings of the SIAM International Conference on Data Mining, 2011
    • Agarwal, S.1
  • 3
    • 77952768125 scopus 로고    scopus 로고
    • Ranking chemical structures for drug discovery: A new machine learning approach
    • Agarwal, S., Dugar, D., and Sengupta, S. Ranking chemical structures for drug discovery: A new machine learning approach. Journal of Chemical Information and Modeling, 50(5):716-731, 2010.
    • (2010) Journal of Chemical Information and Modeling , vol.50 , Issue.5 , pp. 716-731
    • Agarwal, S.1    Dugar, D.2    Sengupta, S.3
  • 6
    • 0041833610 scopus 로고    scopus 로고
    • Partial AUC estimation and regression
    • DOI 10.1111/1541-0420.00071
    • Dodd, L. E. and Pepe, M. S. Partial AUC estimation and regression. Biometrics, 59(3):614-623, 2003. (Pubitemid 37093400)
    • (2003) Biometrics , vol.59 , Issue.3 , pp. 614-623
    • Dodd, L.E.1    Pepe, M.S.2
  • 8
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • Smola, A., Bartlett, P., Schoelkopf, B., and Schuurmans, D. (eds.), MIT Press
    • Herbrich, R., Graepel, T., and Obermayer, K. Large margin rank boundaries for ordinal regression. In Smola, A., Bartlett, P., Schoelkopf, B., and Schuurmans, D. (eds.), Advances in Large Margin Classifiers, pp. 115-132. MIT Press, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 9
    • 84897537606 scopus 로고    scopus 로고
    • The linear combinations of biomarkers which maximize the partial area under the ROC curve
    • Hsu, M.-J. and Hsueh, H.-M. The linear combinations of biomarkers which maximize the partial area under the ROC curve. Computational Statistics, pp. 1-20, 2012.
    • (2012) Computational Statistics , pp. 1-20
    • Hsu, M.-J.1    Hsueh, H.-M.2
  • 14
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • DOI 10.1021/ci049641u
    • Jorissen, R. N. and Gilson, M. K. Virtual screening of molecular databases using a support vector machine. Journal of Chemical Information and Modelinq, 45:549-561, 2005. (Pubitemid 40795161)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.3 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 15
    • 77953243025 scopus 로고    scopus 로고
    • A boosting method for maximizing the partial area under the ROC curve
    • Komori, O. and Eguchi, S. A boosting method for maximizing the partial area under the ROC curve. BMC Bioinformatics, 11:314, 2010.
    • (2010) BMC Bioinformatics , vol.11 , pp. 314
    • Komori, O.1    Eguchi, S.2
  • 17
    • 0014627508 scopus 로고
    • The FROC curve: A representation of the observer's performance for the method of free response
    • Miller, H. The FROC curve: A representation of the observer's performance for the method of free response. Journal of the Acoustical Society of America, 46(6B): 1473-1476, 1969.
    • (1969) Journal of the Acoustical Society of America , vol.46 , Issue.6 B , pp. 1473-1476
    • Miller, H.1
  • 18
    • 0010202247 scopus 로고    scopus 로고
    • Combining diagnostic test results to increase accuracy
    • DOI 10.1093/biostatistics/1.2.123
    • Pepe, M. S. and Thompson, M. L. Combining diagnostic test results to increase accuracy. Biostatistics, 1(2):123-140, 2000. (Pubitemid 33213526)
    • (2000) Biostatistics Oxford , vol.1 , Issue.2 , pp. 123-140
    • Pepe, M.S.1    Thompson, M.L.2
  • 19
    • 33646018046 scopus 로고    scopus 로고
    • Evaluation of different biological data and computational classification methods for use in protein interaction prediction
    • Qi, Y., Bar-joseph, Z., and Klein-seetharaman, J. Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins, 63:490-500, 2006.
    • (2006) Proteins , vol.63 , pp. 490-500
    • Qi, Y.1    Bar-joseph, Z.2    Klein-seetharaman, J.3
  • 22
    • 79958818046 scopus 로고    scopus 로고
    • Partial AUC maximization in a linear combination of dichotomizers
    • Ricamato, M. T. and Tortorella, F. Partial AUC maximization in a linear combination of dichotomizers. Pattern Recognition, 44(10-11):2669-2677, 2011.
    • (2011) Pattern Recognition , vol.44 , Issue.10-11 , pp. 2669-2677
    • Ricamato, M.T.1    Tortorella, F.2
  • 23
    • 70450239631 scopus 로고    scopus 로고
    • The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list
    • Rudin, C. The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list. Journal of Machine Learning Research, 10:2233-2271, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2233-2271
    • Rudin, C.1
  • 24
    • 84872680082 scopus 로고    scopus 로고
    • An extension of the receiver operating characteristic curve and AUC-optimal classification
    • Takenouchi, T., Komori, O., and Eguchi, S. An extension of the receiver operating characteristic curve and AUC-optimal classification. Neural Computation, 24 (10):2789-2824, 2012.
    • (2012) Neural Computation , vol.24 , Issue.10 , pp. 2789-2824
    • Takenouchi, T.1    Komori, O.2    Eguchi, S.3
  • 26
    • 84897541533 scopus 로고    scopus 로고
    • struct, 2008. URL http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html.
    • (2008) struct
    • Vedaldi, A.1
  • 27
    • 79953154460 scopus 로고    scopus 로고
    • Marker selection via maximizing the partial area under the ROC curve of linear risk scores
    • Wang, Z. and Chang, Y.-C.I. Marker selection via maximizing the partial area under the ROC curve of linear risk scores. Biostatistics, 12(2):369-385, 2011.
    • (2011) Biostatistics , vol.12 , Issue.2 , pp. 369-385
    • Wang, Z.1    Chang, Y.-C.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.