-
1
-
-
84880083510
-
The Infinite Push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list
-
Agarwal, S. The Infinite Push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list. In Proceedings of the SIAM International Conference on Data Mining, 2011.
-
Proceedings of the SIAM International Conference on Data Mining, 2011
-
-
Agarwal, S.1
-
2
-
-
21844440820
-
Generalization bounds for the area under the ROC curve
-
Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., and Roth, D. Generalization bounds for the area under the ROC curve. Journal of Machine Learning Research, 6: 393-425, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 393-425
-
-
Agarwal, S.1
Graepel, T.2
Herbrich, R.3
Har-Peled, S.4
Roth, D.5
-
3
-
-
77952768125
-
Ranking chemical structures for drug discovery: A new machine learning approach
-
Agarwal, S., Dugar, D., and Sengupta, S. Ranking chemical structures for drug discovery: A new machine learning approach. Journal of Chemical Information and Modeling, 50(5):716-731, 2010.
-
(2010)
Journal of Chemical Information and Modeling
, vol.50
, Issue.5
, pp. 716-731
-
-
Agarwal, S.1
Dugar, D.2
Sengupta, S.3
-
4
-
-
31844446958
-
Learning to rank using gradient descent
-
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullender, G. Learning to rank using gradient descent. In Proceedings of the 22nd International Conference on Machine Learning, 2005.
-
Proceedings of the 22nd International Conference on Machine Learning, 2005
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
6
-
-
0041833610
-
Partial AUC estimation and regression
-
DOI 10.1111/1541-0420.00071
-
Dodd, L. E. and Pepe, M. S. Partial AUC estimation and regression. Biometrics, 59(3):614-623, 2003. (Pubitemid 37093400)
-
(2003)
Biometrics
, vol.59
, Issue.3
, pp. 614-623
-
-
Dodd, L.E.1
Pepe, M.S.2
-
7
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4:933-969, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
8
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
Smola, A., Bartlett, P., Schoelkopf, B., and Schuurmans, D. (eds.), MIT Press
-
Herbrich, R., Graepel, T., and Obermayer, K. Large margin rank boundaries for ordinal regression. In Smola, A., Bartlett, P., Schoelkopf, B., and Schuurmans, D. (eds.), Advances in Large Margin Classifiers, pp. 115-132. MIT Press, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
9
-
-
84897537606
-
The linear combinations of biomarkers which maximize the partial area under the ROC curve
-
Hsu, M.-J. and Hsueh, H.-M. The linear combinations of biomarkers which maximize the partial area under the ROC curve. Computational Statistics, pp. 1-20, 2012.
-
(2012)
Computational Statistics
, pp. 1-20
-
-
Hsu, M.-J.1
Hsueh, H.-M.2
-
14
-
-
20444410410
-
Virtual screening of molecular databases using a support vector machine
-
DOI 10.1021/ci049641u
-
Jorissen, R. N. and Gilson, M. K. Virtual screening of molecular databases using a support vector machine. Journal of Chemical Information and Modelinq, 45:549-561, 2005. (Pubitemid 40795161)
-
(2005)
Journal of Chemical Information and Modeling
, vol.45
, Issue.3
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
15
-
-
77953243025
-
A boosting method for maximizing the partial area under the ROC curve
-
Komori, O. and Eguchi, S. A boosting method for maximizing the partial area under the ROC curve. BMC Bioinformatics, 11:314, 2010.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 314
-
-
Komori, O.1
Eguchi, S.2
-
16
-
-
45449095122
-
Letor: Benchmark dataset for research on learning to rank for information retrieval
-
Liu, T-Y., Xu, J., Qin, T., Xiong, W., and Li, H. Letor: benchmark dataset for research on learning to rank for information retrieval. In Proceedings of SIGIR 2007 Workshop on Learning to Rank for Information Retrieval, 2007.
-
Proceedings of SIGIR 2007 Workshop on Learning to Rank for Information Retrieval, 2007
-
-
Liu, T.-Y.1
Xu, J.2
Qin, T.3
Xiong, W.4
Li, H.5
-
17
-
-
0014627508
-
The FROC curve: A representation of the observer's performance for the method of free response
-
Miller, H. The FROC curve: A representation of the observer's performance for the method of free response. Journal of the Acoustical Society of America, 46(6B): 1473-1476, 1969.
-
(1969)
Journal of the Acoustical Society of America
, vol.46
, Issue.6 B
, pp. 1473-1476
-
-
Miller, H.1
-
18
-
-
0010202247
-
Combining diagnostic test results to increase accuracy
-
DOI 10.1093/biostatistics/1.2.123
-
Pepe, M. S. and Thompson, M. L. Combining diagnostic test results to increase accuracy. Biostatistics, 1(2):123-140, 2000. (Pubitemid 33213526)
-
(2000)
Biostatistics Oxford
, vol.1
, Issue.2
, pp. 123-140
-
-
Pepe, M.S.1
Thompson, M.L.2
-
19
-
-
33646018046
-
Evaluation of different biological data and computational classification methods for use in protein interaction prediction
-
Qi, Y., Bar-joseph, Z., and Klein-seetharaman, J. Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins, 63:490-500, 2006.
-
(2006)
Proteins
, vol.63
, pp. 490-500
-
-
Qi, Y.1
Bar-joseph, Z.2
Klein-seetharaman, J.3
-
21
-
-
77950225894
-
KDD Cup 2008 and the workshop on mining medical data
-
Rao, R. B., Yakhnenko, O., and Krishnapuram, B. KDD Cup 2008 and the workshop on mining medical data. SIGKDD Explorations Newsletter, 10(2):34-38, 2008.
-
(2008)
SIGKDD Explorations Newsletter
, vol.10
, Issue.2
, pp. 34-38
-
-
Rao, R.B.1
Yakhnenko, O.2
Krishnapuram, B.3
-
22
-
-
79958818046
-
Partial AUC maximization in a linear combination of dichotomizers
-
Ricamato, M. T. and Tortorella, F. Partial AUC maximization in a linear combination of dichotomizers. Pattern Recognition, 44(10-11):2669-2677, 2011.
-
(2011)
Pattern Recognition
, vol.44
, Issue.10-11
, pp. 2669-2677
-
-
Ricamato, M.T.1
Tortorella, F.2
-
23
-
-
70450239631
-
The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list
-
Rudin, C. The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list. Journal of Machine Learning Research, 10:2233-2271, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2233-2271
-
-
Rudin, C.1
-
24
-
-
84872680082
-
An extension of the receiver operating characteristic curve and AUC-optimal classification
-
Takenouchi, T., Komori, O., and Eguchi, S. An extension of the receiver operating characteristic curve and AUC-optimal classification. Neural Computation, 24 (10):2789-2824, 2012.
-
(2012)
Neural Computation
, vol.24
, Issue.10
, pp. 2789-2824
-
-
Takenouchi, T.1
Komori, O.2
Eguchi, S.3
-
25
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, 6:1453-1484, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
26
-
-
84897541533
-
-
struct, 2008. URL http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html.
-
(2008)
struct
-
-
Vedaldi, A.1
-
27
-
-
79953154460
-
Marker selection via maximizing the partial area under the ROC curve of linear risk scores
-
Wang, Z. and Chang, Y.-C.I. Marker selection via maximizing the partial area under the ROC curve of linear risk scores. Biostatistics, 12(2):369-385, 2011.
-
(2011)
Biostatistics
, vol.12
, Issue.2
, pp. 369-385
-
-
Wang, Z.1
Chang, Y.-C.I.2
-
28
-
-
65449163898
-
Asymmetric support vector machines: Low false-positive learning under the user tolerance
-
Wu, S.-H., Lin, K.-P., Chen, C.-M., and Chen, M.-S. Asymmetric support vector machines: low false-positive learning under the user tolerance. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008.
-
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008
-
-
Wu, S.-H.1
Lin, K.-P.2
Chen, C.-M.3
Chen, M.-S.4
-
30
-
-
36448983903
-
A support vector method for optimizing average precision
-
Yue, Y., Finley, T., Radlinski, F., and Joachims, T. A support vector method for optimizing average precision. In Proceedings of the 30th ACM SIGIR International Conference on Research and Development in Information Retrieval, 2007.
-
Proceedings of the 30th ACM SIGIR International Conference on Research and Development in Information Retrieval, 2007
-
-
Yue, Y.1
Finley, T.2
Radlinski, F.3
Joachims, T.4
|