메뉴 건너뛰기




Volumn 11, Issue 19, 2011, Pages 3786-3792

Protein 8-class secondary structure prediction using conditional neural fields

Author keywords

Bioinformatics; Conditional neural fields; Eight class; Protein; Secondary structure prediction

Indexed keywords

AMINO ACID SEQUENCE; ARTICLE; COMPARATIVE STUDY; CONDITIONAL NEURAL FIELD; PRIORITY JOURNAL; PROBABILITY; PROTEIN 8 CLASS SECONDARY STRUCTURE; PROTEIN ANALYSIS; PROTEIN SECONDARY STRUCTURE; PROTEIN STRUCTURE; SENSITIVITY ANALYSIS;

EID: 80053030893     PISSN: 16159853     EISSN: 16159861     Source Type: Journal    
DOI: 10.1002/pmic.201100196     Document Type: Article
Times cited : (88)

References (36)
  • 1
    • 76549252207 scopus 로고
    • Two hydrogen-bonded helical configurations of the polypeptide chain
    • Pauling, L., Corey, R. B., Branson, H. R., Two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 1951, 37, 205-211.
    • (1951) Proc. Natl. Acad. Sci. USA , vol.37 , pp. 205-211
    • Pauling, L.1    Corey, R.B.2    Branson, H.R.3
  • 2
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch, W., Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22, 2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 3
    • 0028327236 scopus 로고
    • Protein folding dynamics: the diffusion-collision model and experimental data
    • Karplus, M., Weaver, D. L., Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci. 1994, 3, 650-668.
    • (1994) Protein Sci. , vol.3 , pp. 650-668
    • Karplus, M.1    Weaver, D.L.2
  • 4
    • 0035005366 scopus 로고    scopus 로고
    • Preorganized secondary structure as an important determinant of fast protein folding
    • Myers, J. K., Oas, T. G., Preorganized secondary structure as an important determinant of fast protein folding. Nat. Struct. Mol. Biol. 2001, 8, 552-558.
    • (2001) Nat. Struct. Mol. Biol. , vol.8 , pp. 552-558
    • Myers, J.K.1    Oas, T.G.2
  • 5
    • 62649111500 scopus 로고    scopus 로고
    • Mimicking the folding pathway to improve homology-free protein structure prediction
    • DeBartolo, J., Colubri, A., Jha, A. K., Fitzgerald, J. E. et al., Mimicking the folding pathway to improve homology-free protein structure prediction. Proc. Natl. Acad. Sci. USA 2009, 106, 3734-3739.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 3734-3739
    • DeBartolo, J.1    Colubri, A.2    Jha, A.K.3    Fitzgerald, J.E.4
  • 6
    • 33644655386 scopus 로고    scopus 로고
    • Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures
    • Boden, M., Yuan, Z., Bailey, T., Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures. BMC Bioinformatics 2006, 7, 68.
    • (2006) BMC Bioinformatics , vol.7 , pp. 68
    • Boden, M.1    Yuan, Z.2    Bailey, T.3
  • 7
    • 34247247779 scopus 로고    scopus 로고
    • Improved residue contact prediction using support vector machines and a large feature set
    • Cheng, J., Baldi, P., Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinformatics 2007, 8, 113.
    • (2007) BMC Bioinformatics , vol.8 , pp. 113
    • Cheng, J.1    Baldi, P.2
  • 8
    • 33747816204 scopus 로고    scopus 로고
    • Identifying sequence regions undergoing conformational change via predicted continuum secondary structure
    • Bodén, M., Bailey, T. L., Identifying sequence regions undergoing conformational change via predicted continuum secondary structure. Bioinformatics 2006, 22, 1809-1814.
    • (2006) Bioinformatics , vol.22 , pp. 1809-1814
    • Bodén, M.1    Bailey, T.L.2
  • 10
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian, N., Sejnowski, T. J., Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 1988, 202, 865-884.
    • (1988) J. Mol. Biol. , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 11
    • 0000268209 scopus 로고
    • Protein secondary structure prediction with a neural network
    • Holley, L. H., Karplus, M., Protein secondary structure prediction with a neural network. Proc. Natl. Acad. Sci. USA 1989, 86, 152-156.
    • (1989) Proc. Natl. Acad. Sci. USA , vol.86 , pp. 152-156
    • Holley, L.H.1    Karplus, M.2
  • 12
    • 0025334980 scopus 로고
    • Improvements in protein secondary structure prediction by an enhanced neural network
    • Kneller, D. G., Cohen, F. E., Langridge, R., Improvements in protein secondary structure prediction by an enhanced neural network. J. Mol. Biol. 1990, 214, 171-182.
    • (1990) J. Mol. Biol. , vol.214 , pp. 171-182
    • Kneller, D.G.1    Cohen, F.E.2    Langridge, R.3
  • 13
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost, B., Sander, C., Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 1993, 232, 584-599.
    • (1993) J. Mol. Biol. , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 14
    • 0028300741 scopus 로고
    • Combining evolutionary information and neural networks to predict protein secondary structure
    • Rost, B., Sander, C., Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 1994, 19, 55-72.
    • (1994) Proteins , vol.19 , pp. 55-72
    • Rost, B.1    Sander, C.2
  • 15
    • 0029889988 scopus 로고    scopus 로고
    • PHD: predicting one-dimensional protein structure by profile-based neural networks
    • Rost, B., PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 1996, 266, 525-539.
    • (1996) Methods Enzymol. , vol.266 , pp. 525-539
    • Rost, B.1
  • 16
    • 0033106244 scopus 로고    scopus 로고
    • Evaluation and improvement of multiple sequence methods for protein secondary structure prediction
    • Cuff, J. A., Barton, G. J., Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 1999, 34, 508-519.
    • (1999) Proteins , vol.34 , pp. 508-519
    • Cuff, J.A.1    Barton, G.J.2
  • 17
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones, D. T., Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 1999, 292, 195-202.
    • (1999) J. Mol. Biol. , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 18
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L. R., A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 1989, 275-286.
    • (1989) Proceedings of the IEEE , pp. 275-286
    • Rabiner, L.R.1
  • 19
    • 0027174134 scopus 로고
    • Prediction of protein secondary structure by the hidden Markov model
    • Asai, K., Hayamizu, S., Handa, K. I., Prediction of protein secondary structure by the hidden Markov model. Bioinformatics 1993, 9, 141-146.
    • (1993) Bioinformatics , vol.9 , pp. 141-146
    • Asai, K.1    Hayamizu, S.2    Handa, K.I.3
  • 20
    • 33745259286 scopus 로고    scopus 로고
    • Protein secondary structure prediction for a single-sequence using hidden semi-Markov models
    • Aydin, Z., Altunbasak, Y., Borodovsky, M., Protein secondary structure prediction for a single-sequence using hidden semi-Markov models. BMC Bioinformatics 2006, 7, 178.
    • (2006) BMC Bioinformatics , vol.7 , pp. 178
    • Aydin, Z.1    Altunbasak, Y.2    Borodovsky, M.3
  • 21
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach
    • Hua, S., Sun, Z., A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J. Mol. Biol. 2001, 308, 397-407.
    • (2001) J. Mol. Biol. , vol.308 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 22
    • 0141593924 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on an improved support vector machines approach
    • Kim, H., Park, H., Protein secondary structure prediction based on an improved support vector machines approach. Protein Eng. 2003, 16, 553-560.
    • (2003) Protein Eng. , vol.16 , pp. 553-560
    • Kim, H.1    Park, H.2
  • 23
    • 0141738785 scopus 로고    scopus 로고
    • Secondary structure prediction with support vector machines
    • Ward, J. J., McGuffin, L. J., Buxton, B. F., Jones, D. T., Secondary structure prediction with support vector machines. Bioinformatics 2003, 19, 1650-1655.
    • (2003) Bioinformatics , vol.19 , pp. 1650-1655
    • Ward, J.J.1    McGuffin, L.J.2    Buxton, B.F.3    Jones, D.T.4
  • 24
    • 1542346418 scopus 로고    scopus 로고
    • A novel method for protein secondary structure prediction using dual-layer SVM and profiles
    • Guo, J., Chen, H., Sun, Z., Lin, Y., A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Proteins 2004, 54, 738-743.
    • (2004) Proteins , vol.54 , pp. 738-743
    • Guo, J.1    Chen, H.2    Sun, Z.3    Lin, Y.4
  • 25
    • 50049099447 scopus 로고    scopus 로고
    • Position-specific residue preference features around the ends of helices and strands and a novel strategy for the prediction of secondary structures
    • Duan, M., Huang, M., Ma, C., Li, L., Zhou, Y., Position-specific residue preference features around the ends of helices and strands and a novel strategy for the prediction of secondary structures. Protein Sci. 2008, 17, 1505-1512.
    • (2008) Protein Sci. , vol.17 , pp. 1505-1512
    • Duan, M.1    Huang, M.2    Ma, C.3    Li, L.4    Zhou, Y.5
  • 26
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • Pollastri, G., Przybylski, D., Rost, B., Baldi, P., Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 2002, 47, 228-235.
    • (2002) Proteins , vol.47 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 27
    • 84863373241 scopus 로고    scopus 로고
    • in: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., Culotta, A. (Eds.), MIT.
    • Peng, J., Bo, L., Xu, J., in: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., Culotta, A. (Eds.), Advances in Neural Information Processing Systems, MIT Press, vol. 22, 2009, pp. 1419-1427.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1419-1427
    • Peng, J.1    Bo, L.2    Xu, J.3
  • 30
    • 50849085804 scopus 로고    scopus 로고
    • Discriminative learning for protein conformation sampling
    • Zhao, F., Li, S., Sterner, B. W., Xu, J., Discriminative learning for protein conformation sampling. Proteins 2008, 73, 228-240.
    • (2008) Proteins , vol.73 , pp. 228-240
    • Zhao, F.1    Li, S.2    Sterner, B.W.3    Xu, J.4
  • 31
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Liu, D. C., Nocedal, J., On the limited memory BFGS method for large scale optimization. Math. Progr. 1989, 45, 503-528.
    • (1989) Math. Progr. , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 32
    • 0035789525 scopus 로고    scopus 로고
    • Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks
    • Meiler, J., Müller, M., Zeidler, A., Schmäschke, F., Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks. J. Mol. Model. 2001, 7, 360-369.
    • (2001) J. Mol. Model. , vol.7 , pp. 360-369
    • Meiler, J.1    Müller, M.2    Zeidler, A.3    Schmäschke, F.4
  • 33
    • 33746239564 scopus 로고    scopus 로고
    • Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences
    • Tan, Y. H., Huang, H., Kihara, D., Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences. Proteins 2006, 64, 587-600.
    • (2006) Proteins , vol.64 , pp. 587-600
    • Tan, Y.H.1    Huang, H.2    Kihara, D.3
  • 34
    • 77954196482 scopus 로고    scopus 로고
    • Low-homology protein threading
    • Peng, J., Xu, J., Low-homology protein threading. Bioinformatics 2010, 26, 294.
    • (2010) Bioinformatics , vol.26 , pp. 294
    • Peng, J.1    Xu, J.2
  • 35
    • 0043180474 scopus 로고    scopus 로고
    • PISCES: a protein sequence culling server
    • Wang, G., Dunbrack, R. L. J., PISCES: a protein sequence culling server. Bioinformatics 2003, 19, 1589-1591.
    • (2003) Bioinformatics , vol.19 , pp. 1589-1591
    • Wang, G.1    Dunbrack, R.L.J.2
  • 36
    • 0028064006 scopus 로고
    • Redefining the goals of protein secondary structure prediction
    • Rost, B., Sander, C., Schneider, R., Redefining the goals of protein secondary structure prediction. J. Mol. Biol. 1994, 235, 13-26.
    • (1994) J. Mol. Biol. , vol.235 , pp. 13-26
    • Rost, B.1    Sander, C.2    Schneider, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.