메뉴 건너뛰기




Volumn 5, Issue AUGUST, 2016, Pages

Real-time imaging of Huntingtin aggregates diverting target search and gene transcription

Author keywords

[No Author keywords available]

Indexed keywords

HUNTINGTIN; TRANSCRIPTION FACTOR; HTT PROTEIN, MOUSE; MUTANT PROTEIN;

EID: 84982835436     PISSN: None     EISSN: 2050084X     Source Type: Journal    
DOI: 10.7554/eLife.17056.001     Document Type: Article
Times cited : (74)

References (94)
  • 2
    • 0024450903 scopus 로고
    • The functional anatomy of basal ganglia disorders
    • Albin RL, Young AB, Penney JB. 1989. The functional anatomy of basal ganglia disorders. Trends in Neurosciences 12:366-375. doi: 10.1016/0166-2236(89)90074-X
    • (1989) Trends in Neurosciences , vol.12 , pp. 366-375
    • Albin, R.L.1    Young, A.B.2    Penney, J.B.3
  • 3
    • 7244236320 scopus 로고    scopus 로고
    • Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death
    • Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. 2004. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805-810. doi: 10.1038/nature02998
    • (2004) Nature , vol.431 , pp. 805-810
    • Arrasate, M.1    Mitra, S.2    Schweitzer, E.S.3    Segal, M.R.4    Finkbeiner, S.5
  • 4
    • 0038701684 scopus 로고    scopus 로고
    • Huntingtin aggregation and toxicity in Huntington’s disease
    • Bates G. 2003. Huntingtin aggregation and toxicity in Huntington’s disease. The Lancet 361:1642-1644. doi: 10.1016/S0140-6736(03)13304-1
    • (2003) The Lancet , vol.361 , pp. 1642-1644
    • Bates, G.1
  • 5
    • 84883541737 scopus 로고    scopus 로고
    • PolyQ disease: Misfiring of a developmental cell death program?
    • Blum ES, Schwendeman AR, Shaham S. 2013. PolyQ disease: misfiring of a developmental cell death program? Trends in Cell Biology 23:168-174. doi: 10.1016/j.tcb.2012.11.003
    • (2013) Trends in Cell Biology , vol.23 , pp. 168-174
    • Blum, E.S.1    Schwendeman, A.R.2    Shaham, S.3
  • 7
    • 28644433087 scopus 로고    scopus 로고
    • Normal huntingtin function: An alternative approach to Huntington’s disease
    • Cattaneo E, Zuccato C, Tartari M. 2005. Normal huntingtin function: an alternative approach to Huntington’s disease. Nature Reviews Neuroscience 6:919-930. doi: 10.1038/nrn1806
    • (2005) Nature Reviews Neuroscience , vol.6 , pp. 919-930
    • Cattaneo, E.1    Zuccato, C.2    Tartari, M.3
  • 10
    • 84872361173 scopus 로고    scopus 로고
    • Significantly differential diffusion of neuropathological aggregates in the brain of transgenic mice carrying N-terminal mutant huntingtin fused with green fluorescent protein
    • Cheng PH, Li CL, Her LS, Chang YF, Chan AW, Chen CM, Yang SH. 2013. Significantly differential diffusion of neuropathological aggregates in the brain of transgenic mice carrying N-terminal mutant huntingtin fused with green fluorescent protein. Brain Structure and Function 218:283-294. doi: 10.1007/s00429-012-0401-x
    • (2013) Brain Structure and Function , vol.218 , pp. 283-294
    • Cheng, P.H.1    Li, C.L.2    Her, L.S.3    Chang, Y.F.4    Chan, A.W.5    Chen, C.M.6    Yang, S.H.7
  • 12
    • 0024811686 scopus 로고
    • Synergistic activation by the glutamine-rich domains of human transcription factor Sp1
    • Courey AJ, Holtzman DA, Jackson SP, Tjian R. 1989. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 59:827-836. doi: 10.1016/0092-8674(89)90606-5
    • (1989) Cell , vol.59 , pp. 827-836
    • Courey, A.J.1    Holtzman, D.A.2    Jackson, S.P.3    Tjian, R.4
  • 13
    • 0030752709 scopus 로고    scopus 로고
    • Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain
    • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990-1993. doi: 10.1126/science.277.5334.1990
    • (1997) Science , vol.277 , pp. 1990-1993
    • Difiglia, M.1    Sapp, E.2    Chase, K.O.3    Davies, S.W.4    Bates, G.P.5    Vonsattel, J.P.6    Aronin, N.7
  • 14
    • 84919702871 scopus 로고    scopus 로고
    • Super-resolution fluorescence of huntingtin reveals growth of globular species into short fibers and coexistence of distinct aggregates
    • Duim WC, Jiang Y, Shen K, Frydman J, Moerner WE. 2014. Super-resolution fluorescence of huntingtin reveals growth of globular species into short fibers and coexistence of distinct aggregates. ACS Chemical Biology 9: 2767-2778. doi: 10.1021/cb500335w
    • (2014) ACS Chemical Biology , vol.9 , pp. 2767-2778
    • Duim, W.C.1    Jiang, Y.2    Shen, K.3    Frydman, J.4    Moerner, W.E.5
  • 16
    • 84934276305 scopus 로고    scopus 로고
    • InferenceMAP: Mapping of single-molecule dynamics with Bayesian inference
    • El Beheiry M, Dahan M, Masson JB. 2015. InferenceMAP: mapping of single-molecule dynamics with Bayesian inference. Nature Methods 12:594-595. doi: 10.1038/nmeth.3441
    • (2015) Nature Methods , vol.12 , pp. 594-595
    • El Beheiry, M.1    Dahan, M.2    Masson, J.B.3
  • 17
    • 34249932435 scopus 로고    scopus 로고
    • Probing transcription factor dynamics at the single-molecule level in a living cell
    • Elf J, Li GW, Xie XS. 2007. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191-1194. doi: 10.1126/science.1141967
    • (2007) Science , vol.316 , pp. 1191-1194
    • Elf, J.1    Li, G.W.2    Xie, X.S.3
  • 20
  • 21
    • 84859475063 scopus 로고    scopus 로고
    • Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination
    • Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MGL. 2012. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. PNAS 109:5311-5315. doi: 10.1073/pnas.1119262109
    • (2012) PNAS , vol.109 , pp. 5311-5315
    • Fiolka, R.1    Shao, L.2    Rego, E.H.3    Davidson, M.W.4    Gustafsson, M.G.L.5
  • 24
    • 0028036190 scopus 로고
    • A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation
    • Gill G, Pascal E, Tseng ZH, Tjian R. 1994. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. PNAS 91: 192-196. doi: 10.1073/pnas.91.1.192
    • (1994) PNAS , vol.91 , pp. 192-196
    • Gill, G.1    Pascal, E.2    Tseng, Z.H.3    Tjian, R.4
  • 27
    • 0027480960 scopus 로고
    • A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group
    • Group, TT. H.s.D.C.R. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971-983. doi: 10.1016/0092-8674(93)90585-e
    • (1993) Cell , vol.72 , pp. 971-983
  • 29
    • 0034933959 scopus 로고    scopus 로고
    • Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington’s disease
    • Ho LW, Brown R, Maxwell M, Wyttenbach A, Rubinsztein DC. 2001. Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington’s disease. Journal of Medical Genetics 38:450-452. doi: 10.1136/jmg.38.7.450
    • (2001) Journal of Medical Genetics , vol.38 , pp. 450-452
    • Ho, L.W.1    Brown, R.2    Maxwell, M.3    Wyttenbach, A.4    Rubinsztein, D.C.5
  • 30
    • 84943364527 scopus 로고    scopus 로고
    • Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice
    • Huang S, Yang S, Guo J, Yan S, Gaertig MA, Li S, Li XJ. 2015. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice. Cell Reports 13:196-208. doi: 10.1016/j.celrep.2015.08.060
    • (2015) Cell Reports , vol.13 , pp. 196-208
    • Huang, S.1    Yang, S.2    Guo, J.3    Yan, S.4    Gaertig, M.A.5    Li, S.6    Li, X.J.7
  • 31
    • 0347379829 scopus 로고    scopus 로고
    • A role of Rnd1 GTPase in dendritic spine formation in hippocampal neurons
    • Ishikawa Y, Katoh H, Negishi M. 2003. A role of Rnd1 GTPase in dendritic spine formation in hippocampal neurons. Journal of Neuroscience 23:11065-11072.
    • (2003) Journal of Neuroscience , vol.23 , pp. 11065-11072
    • Ishikawa, Y.1    Katoh, H.2    Negishi, M.3
  • 33
    • 0021139033 scopus 로고
    • Reduced Purkinje cell density in Huntington’s disease
    • Jeste DV, Barban L, Parisi J. 1984. Reduced Purkinje cell density in Huntington’s disease. Experimental Neurology 85:78-86. doi: 10.1016/0014-4886(84)90162-6
    • (1984) Experimental Neurology , vol.85 , pp. 78-86
    • Jeste, D.V.1    Barban, L.2    Parisi, J.3
  • 36
    • 0034652127 scopus 로고    scopus 로고
    • Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins
    • Krobitsch S, Lindquist S. 2000. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. PNAS 97:1589-1594. doi: 10.1073/pnas.97.4.1589
    • (2000) PNAS , vol.97 , pp. 1589-1594
    • Krobitsch, S.1    Lindquist, S.2
  • 37
    • 84903755463 scopus 로고    scopus 로고
    • Transcriptional dysregulation in Huntington’s disease: A failure of adaptive transcriptional homeostasis
    • Kumar A, Vaish M, Ratan RR. 2014. Transcriptional dysregulation in Huntington’s disease: a failure of adaptive transcriptional homeostasis. Drug Discovery Today 19:956-962. doi: 10.1016/j.drudis.2014.03.016
    • (2014) Drug Discovery Today , vol.19 , pp. 956-962
    • Kumar, A.1    Vaish, M.2    Ratan, R.R.3
  • 39
    • 84880730823 scopus 로고    scopus 로고
    • Huntington’s disease: Underlying molecular mechanisms and emerging concepts
    • Labbadia J, Morimoto RI. 2013. Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends in Biochemical Sciences 38:378-385. doi: 10.1016/j.tibs.2013.05.003
    • (2013) Trends in Biochemical Sciences , vol.38 , pp. 378-385
    • Labbadia, J.1    Morimoto, R.I.2
  • 40
    • 0035807360 scopus 로고    scopus 로고
    • A forkhead-domain gene is mutated in a severe speech and language disorder
    • Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. 2001. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519-523. doi: 10.1038/35097076
    • (2001) Nature , vol.413 , pp. 519-523
    • Lai, C.S.1    Fisher, S.E.2    Hurst, J.A.3    Vargha-Khadem, F.4    Monaco, A.P.5
  • 41
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357-359. doi:10.1038/nmeth.1923
    • (2012) Nature Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 43
    • 1542267796 scopus 로고    scopus 로고
    • Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease
    • Lee W-CM, Yoshihara M, Littleton JT. 2004. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. PNAS 101:3224-3229. doi: 10.1073/pnas.0400243101
    • (2004) PNAS , vol.101 , pp. 3224-3229
    • Lee, W.-C.1    Yoshihara, M.2    Littleton, J.T.3
  • 44
    • 84929673223 scopus 로고    scopus 로고
    • Imaging live-cell dynamics and structure at the single-molecule level
    • Liu Z, Lavis LD, Betzig E. 2015. Imaging live-cell dynamics and structure at the single-molecule level. Molecular Cell 58:644-659. doi: 10.1016/j.molcel.2015.02.033
    • (2015) Molecular Cell , vol.58 , pp. 644-659
    • Liu, Z.1    Lavis, L.D.2    Betzig, E.3
  • 49
    • 0141891215 scopus 로고    scopus 로고
    • Pathogenesis of polyglutamine disorders: Aggregation revisited
    • Michalik A, Van Broeckhoven C. 2003. Pathogenesis of polyglutamine disorders: aggregation revisited. Human Molecular Genetics 12 Spec No 2:R173-R186. doi: 10.1093/hmg/ddg295
    • (2003) Human Molecular Genetics 12 Spec , vol.2
    • Michalik, A.1    Van Broeckhoven, C.2
  • 50
    • 84907343952 scopus 로고    scopus 로고
    • The expanding role for chromatin and transcription in polyglutamine disease
    • Mohan RD, Abmayr SM, Workman JL. 2014. The expanding role for chromatin and transcription in polyglutamine disease. Current Opinion in Genetics and Development 26:96-104. doi: 10.1016/j.gde.2014.06.008
    • (2014) Current Opinion in Genetics and Development , vol.26 , pp. 96-104
    • Mohan, R.D.1    Abmayr, S.M.2    Workman, J.L.3
  • 51
    • 84944907005 scopus 로고    scopus 로고
    • Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
    • Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP. 2015. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123-133. doi: 10.1016/j.cell.2015.09.015
    • (2015) Cell , vol.163 , pp. 123-133
    • Molliex, A.1    Temirov, J.2    Lee, J.3    Coughlin, M.4    Kanagaraj, A.P.5    Kim, H.J.6    Mittag, T.7    Taylor, J.P.8
  • 54
    • 0029055717 scopus 로고
    • Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes
    • Nasir J, Floresco SB, O’Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD, Phillips AG, Hayden MR. 1995. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81:811-823. doi: 10.1016/0092-8674(95)90542-1
    • (1995) Cell , vol.81 , pp. 811-823
    • Nasir, J.1    Floresco, S.B.2    O’Kusky, J.R.3    Diewert, V.M.4    Richman, J.M.5    Zeisler, J.6    Borowski, A.7    Marth, J.D.8    Phillips, A.G.9    Hayden, M.R.10
  • 55
    • 0037108860 scopus 로고    scopus 로고
    • Identification of the human PHLDA1/TDAG51 gene: Down- regulation in metastatic melanoma contributes to apoptosis resistance and growth deregulation
    • Neef R, Kuske MA, Prös E, Johnson JP. 2002. Identification of the human PHLDA1/TDAG51 gene: down- regulation in metastatic melanoma contributes to apoptosis resistance and growth deregulation. Cancer Research 62:5920-5929.
    • (2002) Cancer Research , vol.62 , pp. 5920-5929
    • Neef, R.1    Kuske, M.A.2    Prös, E.3    Johnson, J.P.4
  • 58
    • 84863100334 scopus 로고    scopus 로고
    • Huntingtin fragments and SOD1 mutants form soluble oligomers in the cell
    • Park YN, Zhao X, Norton M, Taylor JP, Eisenberg E, Greene LE. 2012. Huntingtin fragments and SOD1 mutants form soluble oligomers in the cell. PLoS One 7:e40329. doi: 10.1371/journal.pone.0040329
    • (2012) Plos One , vol.7
    • Park, Y.N.1    Zhao, X.2    Norton, M.3    Taylor, J.P.4    Eisenberg, E.5    Greene, L.E.6
  • 60
    • 84899745176 scopus 로고    scopus 로고
    • Cystathionine g-lyase deficiency mediates neurodegeneration in Huntington’s disease
    • Paul BD, Sbodio JI, Xu R, Vandiver MS, Cha JY, Snowman AM, Snyder SH. 2014. Cystathionine g-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature 509:96-100. doi: 10.1038/nature13136
    • (2014) Nature , vol.509 , pp. 96-100
    • Paul, B.D.1    Sbodio, J.I.2    Xu, R.3    Vandiver, M.S.4    Cha, J.Y.5    Snowman, A.M.6    Snyder, S.H.7
  • 61
    • 0035818579 scopus 로고    scopus 로고
    • Specificity in intracellular protein aggregation and inclusion body formation
    • Rajan RS, Illing ME, Bence NF, Kopito RR. 2001. Specificity in intracellular protein aggregation and inclusion body formation. PNAS 98:13060-13065. doi: 10.1073/pnas.181479798
    • (2001) PNAS , vol.98 , pp. 13060-13065
    • Rajan, R.S.1    Illing, M.E.2    Bence, N.F.3    Kopito, R.R.4
  • 63
    • 83255164884 scopus 로고    scopus 로고
    • Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution
    • Rhee HS, Pugh BF. 2011. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147:1408-1419. doi: 10.1016/j.cell.2011.11.013
    • (2011) Cell , vol.147 , pp. 1408-1419
    • Rhee, H.S.1    Pugh, B.F.2
  • 65
    • 78650031174 scopus 로고    scopus 로고
    • Huntington’s disease: From molecular pathogenesis to clinical treatment
    • Ross CA, Tabrizi SJ. 2011. Huntington’s disease: from molecular pathogenesis to clinical treatment. The Lancet Neurology 10:83-98. doi: 10.1016/S1474-4422(10)70245-3
    • (2011) The Lancet Neurology , vol.10 , pp. 83-98
    • Ross, C.A.1    Tabrizi, S.J.2
  • 66
    • 0036533795 scopus 로고    scopus 로고
    • Lessons from animal models of Huntington’s disease
    • Rubinsztein DC. 2002. Lessons from animal models of Huntington’s disease. Trends in Genetics 18:202-209. doi: 10.1016/S0168-9525(01)02625-7
    • (2002) Trends in Genetics , vol.18 , pp. 202-209
    • Rubinsztein, D.C.1
  • 68
    • 84956819046 scopus 로고    scopus 로고
    • Delayed emergence of subdiffraction-sized mutant huntingtin fibrils following inclusion body formation
    • Sahl SJ, Lau L, Vonk WI, Weiss LE, Frydman J, Moerner WE. 2015. Delayed emergence of subdiffraction-sized mutant huntingtin fibrils following inclusion body formation. Quarterly Reviews of Biophysics:1-13. doi: 10.1017/S0033583515000219
    • (2015) Quarterly Reviews of Biophysics , pp. 1-13
    • Sahl, S.J.1    Lau, L.2    Vonk, W.I.3    Weiss, L.E.4    Frydman, J.5    Moerner, W.E.6
  • 69
    • 84870839496 scopus 로고    scopus 로고
    • Cellular inclusion bodies of mutant huntingtin exon 1 obscure small fibrillar aggregate species
    • Sahl SJ, Weiss LE, Duim WC, Frydman J, Moerner WE. 2012. Cellular inclusion bodies of mutant huntingtin exon 1 obscure small fibrillar aggregate species. Scientific Reports 2:895. doi: 10.1038/srep00895
    • (2012) Scientific Reports , vol.2 , pp. 895
    • Sahl, S.J.1    Weiss, L.E.2    Duim, W.C.3    Frydman, J.4    Moerner, W.E.5
  • 70
    • 0032475931 scopus 로고    scopus 로고
    • Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions
    • Saudou F, Finkbeiner S, Devys D, Greenberg ME. 1998. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55-66. doi: 10.1016/S0092-8674(00)81782-1
    • (1998) Cell , vol.95 , pp. 55-66
    • Saudou, F.1    Finkbeiner, S.2    Devys, D.3    Greenberg, M.E.4
  • 72
    • 48449104310 scopus 로고    scopus 로고
    • Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes
    • Serge´ A, Bertaux N, Rigneault H, Marguet D. 2008. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nature Methods 5:687-694. doi: 10.1038/nmeth.1233
    • (2008) Nature Methods , vol.5 , pp. 687-694
    • Serge´, A.1    Bertaux, N.2    Rigneault, H.3    Marguet, D.4
  • 76
    • 33847302564 scopus 로고    scopus 로고
    • Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space
    • Strehlow AN, Li JZ, Myers RM. 2007. Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Human Molecular Genetics 16:391-409. doi: 10.1093/hmg/ddl467
    • (2007) Human Molecular Genetics , vol.16 , pp. 391-409
    • Strehlow, A.N.1    Li, J.Z.2    Myers, R.M.3
  • 78
    • 0038054082 scopus 로고    scopus 로고
    • Expression of Foxp2, a gene involved in speech and language, in the developing and adult striatum
    • Takahashi K, Liu FC, Hirokawa K, Takahashi H. 2003. Expression of Foxp2, a gene involved in speech and language, in the developing and adult striatum. Journal of Neuroscience Research 73:61-72. doi: 10.1002/jnr.10638
    • (2003) Journal of Neuroscience Research , vol.73 , pp. 61-72
    • Takahashi, K.1    Liu, F.C.2    Hirokawa, K.3    Takahashi, H.4
  • 81
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: Discovering splice junctions with RNA-Seq
    • Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105-1111. doi: 10.1093/bioinformatics/btp120
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 85
    • 52049093169 scopus 로고    scopus 로고
    • Polyglutamine neurodegeneration: Protein misfolding revisited
    • Williams AJ, Paulson HL. 2008. Polyglutamine neurodegeneration: protein misfolding revisited. Trends in Neurosciences 31:521-528. doi: 10.1016/j.tins.2008.07.004
    • (2008) Trends in Neurosciences , vol.31 , pp. 521-528
    • Williams, A.J.1    Paulson, H.L.2
  • 87
    • 0037246194 scopus 로고    scopus 로고
    • Roles of the stress-induced gene IEX-1 in regulation of cell death and oncogenesis
    • Wu MX. 2003. Roles of the stress-induced gene IEX-1 in regulation of cell death and oncogenesis. Apoptosis 8: 11-18. doi: 10.1023/A:1021688600370
    • (2003) Apoptosis , vol.8 , pp. 11-18
    • Wu, M.X.1
  • 88
    • 84873417965 scopus 로고    scopus 로고
    • Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation
    • Wüstner D, Solanko LM, Lund FW, Sage D, Schroll HJ, Lomholt MA. 2012. Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation. BMC Bioinformatics 13:296. doi: 10.1186/1471-2105-13-296
    • (2012) BMC Bioinformatics , vol.13 , pp. 296
    • Wüstner, D.1    Solanko, L.M.2    Lund, F.W.3    Sage, D.4    Schroll, H.J.5    Lomholt, M.A.6
  • 89
    • 84946221201 scopus 로고    scopus 로고
    • The LC Domain of hnRNPA2 Adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei
    • Xiang S, Kato M, Wu LC, Lin Y, Ding M, Zhang Y, Yu Y, McKnight SL. 2015. The LC Domain of hnRNPA2 Adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163:829-839. doi: 10.1016/j.cell.2015.10.040
    • (2015) Cell , vol.163 , pp. 829-839
    • Xiang, S.1    Kato, M.2    Wu, L.C.3    Lin, Y.4    Ding, M.5    Zhang, Y.6    Yu, Y.7    McKnight, S.L.8
  • 90
    • 0034737299 scopus 로고    scopus 로고
    • Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease
    • Yamamoto A, Lucas JJ, Hen R. 2000. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57-66. doi: 10.1016/S0092-8674(00)80623-6
    • (2000) Cell , vol.101 , pp. 57-66
    • Yamamoto, A.1    Lucas, J.J.2    Hen, R.3
  • 91
    • 84993912315 scopus 로고
    • Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue
    • Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A. 1995. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nature Genetics 11:155-163. doi: 10.1038/ng1095-155
    • (1995) Nature Genetics , vol.11 , pp. 155-163
    • Zeitlin, S.1    Liu, J.P.2    Chapman, D.L.3    Papaioannou, V.E.4    Efstratiadis, A.5
  • 92
    • 29244462838 scopus 로고    scopus 로고
    • In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets
    • Zhai W, Jeong H, Cui L, Krainc D, Tjian R. 2005. In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell 123:1241-1253. doi: 10.1016/j.cell.2005.10.030
    • (2005) Cell , vol.123 , pp. 1241-1253
    • Zhai, W.1    Jeong, H.2    Cui, L.3    Krainc, D.4    Tjian, R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.