-
1
-
-
84901310586
-
Mechanisms and functions of inflammasomes
-
Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157 (5):1013-1022.
-
(2014)
Cell
, vol.157
, Issue.5
, pp. 1013-1022
-
-
Lamkanfi, M.1
Dixit, V.M.2
-
2
-
-
84946925072
-
Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence
-
Zhao Y, Shao F (2016) Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Curr Opin Microbiol 29:37-42.
-
(2016)
Curr Opin Microbiol
, vol.29
, pp. 37-42
-
-
Zhao, Y.1
Shao, F.2
-
3
-
-
84921909014
-
The inflammasomes and autoinflammatory syndromes
-
Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E (2015) The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol 10:395-424.
-
(2015)
Annu Rev Pathol
, vol.10
, pp. 395-424
-
-
Broderick, L.1
De Nardo, D.2
Franklin, B.S.3
Hoffman, H.M.4
Latz, E.5
-
5
-
-
84942892037
-
Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
-
Shi J, et al. (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526 (7575):660-665.
-
(2015)
Nature
, vol.526
, Issue.7575
, pp. 660-665
-
-
Shi, J.1
-
6
-
-
84942856523
-
Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
-
Kayagaki N, et al. (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526 (7575):666-671.
-
(2015)
Nature
, vol.526
, Issue.7575
, pp. 666-671
-
-
Kayagaki, N.1
-
7
-
-
84906571225
-
Inflammatory caspases are innate immune receptors for intracellular LPS
-
Shi J, et al. (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514 (7521):187-192.
-
(2014)
Nature
, vol.514
, Issue.7521
, pp. 187-192
-
-
Shi, J.1
-
8
-
-
84921461716
-
Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity
-
Yang J, Zhao Y, Shao F (2015) Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr Opin Immunol 32:78-83.
-
(2015)
Curr Opin Immunol
, vol.32
, pp. 78-83
-
-
Yang, J.1
Zhao, Y.2
Shao, F.3
-
9
-
-
0036671894
-
The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta
-
Martinon F, Burns K, Tschopp J (2002) The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10 (2):417-426.
-
(2002)
Mol Cell
, vol.10
, Issue.2
, pp. 417-426
-
-
Martinon, F.1
Burns, K.2
Tschopp, J.3
-
10
-
-
80053379974
-
Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
-
Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477 (7366):592-595.
-
(2011)
Nature
, vol.477
, Issue.7366
, pp. 592-595
-
-
Kofoed, E.M.1
Vance, R.E.2
-
11
-
-
80053349020
-
The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
-
Zhao Y, et al. (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477 (7366):596-600.
-
(2011)
Nature
, vol.477
, Issue.7366
, pp. 596-600
-
-
Zhao, Y.1
-
12
-
-
84885439494
-
Cutting edge: Mouse NAIP1 detects the type III secretion system needle protein
-
Rayamajhi M, Zak DE, Chavarria-Smith J, Vance RE, Miao EA (2013) Cutting edge: Mouse NAIP1 detects the type III secretion system needle protein. J Immunol 191 (8): 3986-3989.
-
(2013)
J Immunol
, vol.191
, Issue.8
, pp. 3986-3989
-
-
Rayamajhi, M.1
Zak, D.E.2
Chavarria-Smith, J.3
Vance, R.E.4
Miao, E.A.5
-
13
-
-
84883329029
-
Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation
-
Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci USA 110 (35):14408-14413.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.35
, pp. 14408-14413
-
-
Yang, J.1
Zhao, Y.2
Shi, J.3
Shao, F.4
-
14
-
-
84898031590
-
Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes
-
Tenthorey JL, Kofoed EM, Daugherty MD, Malik HS, Vance RE (2014) Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol Cell 54 (1):17-29.
-
(2014)
Mol Cell
, vol.54
, Issue.1
, pp. 17-29
-
-
Tenthorey, J.L.1
Kofoed, E.M.2
Daugherty, M.D.3
Malik, H.S.4
Vance, R.E.5
-
15
-
-
84927774890
-
The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus
-
Zhao Y, Shao F (2015) The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev 265 (1):85-102.
-
(2015)
Immunol Rev
, vol.265
, Issue.1
, pp. 85-102
-
-
Zhao, Y.1
Shao, F.2
-
16
-
-
80052152283
-
The PYHIN protein family as mediators of host defenses
-
Schattgen SA, Fitzgerald KA (2011) The PYHIN protein family as mediators of host defenses. Immunol Rev 243 (1):109-118.
-
(2011)
Immunol Rev
, vol.243
, Issue.1
, pp. 109-118
-
-
Schattgen, S.A.1
Fitzgerald, K.A.2
-
17
-
-
16944365196
-
A candidate gene for familial Mediterranean fever
-
Anonymous; French FMF Consortium (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17 (1):25-31.
-
(1997)
Nat Genet
, vol.17
, Issue.1
, pp. 25-31
-
-
Anonymous1
-
18
-
-
0030745449
-
Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever
-
Anonymous; The International FMF Consortium (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90 (4):797-807.
-
(1997)
Cell
, vol.90
, Issue.4
, pp. 797-807
-
-
Anonymous1
-
19
-
-
69049085064
-
Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy
-
Chae JJ, Aksentijevich I, Kastner DL (2009) Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy. Br J Haematol 146 (5): 467-478.
-
(2009)
Br J Haematol
, vol.146
, Issue.5
, pp. 467-478
-
-
Chae, J.J.1
Aksentijevich, I.2
Kastner, D.L.3
-
20
-
-
30844432876
-
Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization
-
Yu JW, et al. (2006) Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ 13 (2):236-249.
-
(2006)
Cell Death Differ
, vol.13
, Issue.2
, pp. 236-249
-
-
Yu, J.W.1
-
21
-
-
79956299492
-
Gain-of-function Pyrin mutations induce NLRP3 proteinindependent interleukin-1β activation and severe autoinflammation in mice
-
Chae JJ, et al. (2011) Gain-of-function Pyrin mutations induce NLRP3 proteinindependent interleukin-1β activation and severe autoinflammation in mice. Immunity 34 (5):755-768.
-
(2011)
Immunity
, vol.34
, Issue.5
, pp. 755-768
-
-
Chae, J.J.1
-
22
-
-
84907270863
-
Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome
-
Xu H, et al. (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513 (7517):237-241.
-
(2014)
Nature
, vol.513
, Issue.7517
, pp. 237-241
-
-
Xu, H.1
-
23
-
-
84964664672
-
A burkholderia type VI effector deamidates rho gtpases to activate the pyrin inflammasome and trigger inflammation
-
Aubert DF, et al. (2016) A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host Microbe 19 (5): 664-674.
-
(2016)
Cell Host Microbe
, vol.19
, Issue.5
, pp. 664-674
-
-
Aubert, D.F.1
-
24
-
-
60549111042
-
Pyrin and ASC co-localize to cellular sites that are rich in polymerizing actin
-
Waite AL, et al. (2009) Pyrin and ASC co-localize to cellular sites that are rich in polymerizing actin. Exp Biol Med (Maywood) 234 (1):40-52.
-
(2009)
Exp Biol Med (Maywood
, vol.234
, Issue.1
, pp. 40-52
-
-
Waite, A.L.1
-
25
-
-
84940453310
-
Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β
-
Kim ML, et al. (2015) Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β. J Exp Med 212 (6):927-938.
-
(2015)
J Exp Med
, vol.212
, Issue.6
, pp. 927-938
-
-
Kim, M.L.1
-
26
-
-
0021995801
-
Effects of Clostridium difficile toxins given intragastrically to animals
-
Lyerly DM, Saum KE, MacDonald DK, Wilkins TD (1985) Effects of Clostridium difficile toxins given intragastrically to animals. Infect Immun 47 (2):349-352.
-
(1985)
Infect Immun
, vol.47
, Issue.2
, pp. 349-352
-
-
Lyerly, D.M.1
Saum, K.E.2
MacDonald, D.K.3
Wilkins, T.D.4
-
27
-
-
0029011449
-
The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins
-
Just I, et al. (1995) The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem 270 (23):13932-13936.
-
(1995)
J Biol Chem
, vol.270
, Issue.23
, pp. 13932-13936
-
-
Just, I.1
-
28
-
-
42749095602
-
Structure and mode of action of clostridial glucosylating toxins: The ABCD model
-
Jank T, Aktories K (2008) Structure and mode of action of clostridial glucosylating toxins: The ABCD model. Trends Microbiol 16 (5):222-229.
-
(2008)
Trends Microbiol
, vol.16
, Issue.5
, pp. 222-229
-
-
Jank, T.1
Aktories, K.2
-
29
-
-
67349114409
-
Toxin B is essential for virulence of Clostridium difficile
-
Lyras D, et al. (2009) Toxin B is essential for virulence of Clostridium difficile. Nature 458 (7242):1176-1179.
-
(2009)
Nature
, vol.458
, Issue.7242
, pp. 1176-1179
-
-
Lyras, D.1
-
30
-
-
77957988127
-
The role of toxin A and toxin B in Clostridium difficile infection
-
Kuehne SA, et al. (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467 (7316):711-713.
-
(2010)
Nature
, vol.467
, Issue.7316
, pp. 711-713
-
-
Kuehne, S.A.1
-
31
-
-
77955482224
-
Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome
-
Ng J, et al. (2010) Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 139 (2):542-552.
-
(2010)
Gastroenterology
, vol.139
, Issue.2
, pp. 542-552
-
-
Ng, J.1
-
32
-
-
20744453230
-
Interaction of pyrin with 14.3.3 in an isoform-specific and phosphorylation-dependent manner regulates its translocation to the nucleus
-
Jéru I, et al. (2005) Interaction of pyrin with 14.3.3 in an isoform-specific and phosphorylation-dependent manner regulates its translocation to the nucleus. Arthritis Rheum 52 (6):1848-1857.
-
(2005)
Arthritis Rheum
, vol.52
, Issue.6
, pp. 1848-1857
-
-
Jéru, I.1
-
33
-
-
80455154960
-
Structural basis of 14-3-3 protein functions
-
Obsil T, Obsilova V (2011) Structural basis of 14-3-3 protein functions. Semin Cell Dev Biol 22 (7):663-672.
-
(2011)
Semin Cell Dev Biol
, vol.22
, Issue.7
, pp. 663-672
-
-
Obsil, T.1
Obsilova, V.2
-
34
-
-
33751248527
-
Structural basis for protein-protein interactions in the 14-3-3 protein family
-
Yang X, et al. (2006) Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci USA 103 (46):17237-17242.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, Issue.46
, pp. 17237-17242
-
-
Yang, X.1
-
35
-
-
0032568665
-
14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove
-
Petosa C, et al. (1998) 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273 (26): 16305-16310.
-
(1998)
J Biol Chem
, vol.273
, Issue.26
, pp. 16305-16310
-
-
Petosa, C.1
-
36
-
-
0029046812
-
Crystal structure of the zeta isoform of the 14-3-3 protein
-
Liu D, et al. (1995) Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376 (6536):191-194.
-
(1995)
Nature
, vol.376
, Issue.6536
, pp. 191-194
-
-
Liu, D.1
-
37
-
-
73349138284
-
Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE
-
Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4 (10):1513-1521.
-
(2009)
Nat Protoc
, vol.4
, Issue.10
, pp. 1513-1521
-
-
Kinoshita, E.1
Kinoshita-Kikuta, E.2
Koike, T.3
-
38
-
-
0035437141
-
The familial Mediterranean fever protein, pyrin, associates with microtubules and colocalizes with actin filaments
-
Mansfield E, et al. (2001) The familial Mediterranean fever protein, pyrin, associates with microtubules and colocalizes with actin filaments. Blood 98 (3):851-859.
-
(2001)
Blood
, vol.98
, Issue.3
, pp. 851-859
-
-
Mansfield, E.1
-
39
-
-
84876567161
-
Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome
-
Misawa T, et al. (2013) Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 14 (5):454-460.
-
(2013)
Nat Immunol
, vol.14
, Issue.5
, pp. 454-460
-
-
Misawa, T.1
-
40
-
-
19544393159
-
Structural basis for the regulation of tubulin by vinblastine
-
Gigant B, et al. (2005) Structural basis for the regulation of tubulin by vinblastine. Nature 435 (7041):519-522.
-
(2005)
Nature
, vol.435
, Issue.7041
, pp. 519-522
-
-
Gigant, B.1
-
41
-
-
1642401199
-
Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain
-
Ravelli RB, et al. (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428 (6979):198-202.
-
(2004)
Nature
, vol.428
, Issue.6979
, pp. 198-202
-
-
Ravelli, R.B.1
-
42
-
-
84897109910
-
The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization
-
Prota AE, et al. (2014) The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. J Mol Biol 426 (8):1848-1860.
-
(2014)
J Mol Biol
, vol.426
, Issue.8
, pp. 1848-1860
-
-
Prota, A.E.1
-
43
-
-
78649819208
-
Chemical probing reveals insights into the signaling mechanism of inflammasome activation
-
Gong Y-N, et al. (2010) Chemical probing reveals insights into the signaling mechanism of inflammasome activation. Cell Res 20 (12):1289-1305.
-
(2010)
Cell Res
, vol.20
, Issue.12
, pp. 1289-1305
-
-
Gong, Y.-N.1
|