-
1
-
-
84880554293
-
-
Technical report
-
S. Mills, S. Lucas, L. Irakliotis, M. Rappa, T. Carlson, and B. Perlowitz, (2012). Demystifying big data: A practical guide to transforming the business of government. [Online]. Technical report. Available: http://www. ibm. com/software/data/demystifying-big-data
-
(2012)
Demystifying Big Data: A Practical Guide to Transforming the Business of Government
-
-
Mills, S.1
Lucas, S.2
Irakliotis, L.3
Rappa, M.4
Carlson, T.5
Perlowitz, B.6
-
2
-
-
84924594811
-
Guest editorial: Big social data analysis
-
E. Cambria, H. Wang, and B. White, "Guest editorial: Big social data analysis, " Knowledge-Based Syst., vol. 69, pp. 1-2, 2014.
-
(2014)
Knowledge-Based Syst
, vol.69
, pp. 1-2
-
-
Cambria, E.1
Wang, H.2
White, B.3
-
3
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, "Support-vector networks, " Machine Learn., vol. 20, no. 3, pp. 273-297, 1995.
-
(1995)
Machine Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
5
-
-
84926662675
-
Nearest neighbor pattern classification
-
T. Cover and P. Hart, "Nearest neighbor pattern classification, " IEEE Trans. Inform. Theory, vol. 13, no. 1, pp. 21-27, 1967.
-
(1967)
IEEE Trans. Inform. Theory
, vol.13
, Issue.1
, pp. 21-27
-
-
Cover, T.1
Hart, P.2
-
6
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests, " Machine Learn., vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Machine Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
7
-
-
84890419941
-
Data mining with big data
-
X. Wu, X. Zhu, G. Q. Wu, and W. Ding, "Data mining with big data, " IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97-107, 2014.
-
(2014)
IEEE Trans. Knowl. Data Eng
, vol.26
, Issue.1
, pp. 97-107
-
-
Wu, X.1
Zhu, X.2
Wu, G.Q.3
Ding, W.4
-
8
-
-
84906690144
-
Mic-SVM: Designing a highly efficient support vector machine for advanced modern multi-core and many-core architectures
-
Y. You, S. L. Song, H. Fu, A. Marquez, M. M. Dehnavi, K. Barker, K. W. Cameron, A. P. Randles, and G. Yang, "Mic-svm: Designing a highly efficient support vector machine for advanced modern multi-core and many-core architectures, " in Proc. IEEE Int. Parallel and Distributed Process. Symp., 2014.
-
(2014)
Proc IEEE Int. Parallel and Distributed Process. Symp
-
-
You, Y.1
Song, S.L.2
Fu, H.3
Marquez, A.4
Dehnavi, M.M.5
Barker, K.6
Cameron, K.W.7
Randles, A.P.8
Yang, G.9
-
9
-
-
84908682236
-
Trends in extreme learning machines: A review
-
G. Huang, G. B. Huang, S. Song, and K. You, "Trends in extreme learning machines: A review, " Neural Networks, vol. 61, pp. 32-48, 2015.
-
(2015)
Neural Networks
, vol.61
, pp. 32-48
-
-
Huang, G.1
Huang, G.B.2
Song, S.3
You, K.4
-
10
-
-
84927804633
-
ELM: Distributed extreme learning machine with mapreduce
-
J. Xin, Z. Wang, C. Chen, L. Ding, G. Wang, and Y. Zhao, "ELM: Distributed extreme learning machine with mapreduce, " World Wide Web, vol. 17, no. 5, pp. 1189-1204, 2014.
-
(2014)
World Wide Web
, vol.17
, Issue.5
, pp. 1189-1204
-
-
Xin, J.1
Wang, Z.2
Chen, C.3
Ding, L.4
Wang, G.5
Zhao, Y.6
-
11
-
-
84870243622
-
Parallel extreme learning machine for regression based on mapreduce
-
Q. He, T. Shang, F. Zhuang, and Z. Shi, "Parallel extreme learning machine for regression based on mapreduce, " Neurocomputing, vol. 102, pp. 52-58, 2013.
-
(2013)
Neurocomputing
, vol.102
, pp. 52-58
-
-
He, Q.1
Shang, T.2
Zhuang, F.3
Shi, Z.4
-
12
-
-
85016363438
-
Parallel ensemble of online sequential extreme learning machine based on mapreduce
-
S. Huang, B. Wang, J. Qiu, J. Yao, G. Wang, and G. Yu, "Parallel ensemble of online sequential extreme learning machine based on mapreduce, " in Proc. ELM-2014, 2015.
-
(2015)
Proc. ELM-2014
-
-
Huang, S.1
Wang, B.2
Qiu, J.3
Yao, J.4
Wang, G.5
Yu, G.6
-
13
-
-
33746869623
-
Parallel sequential minimal optimization for the training of support vector machines
-
L. J. Cao, S. S. Keerthi, C. J. Ong, J. Q. Zhang, U. Periyathamby, X. J. Fu, and H. P. Lee, "Parallel sequential minimal optimization for the training of support vector machines, " IEEE Trans. Neural Networks, vol. 17, no. 4, pp. 1039-1049, 2006.
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, Issue.4
, pp. 1039-1049
-
-
Cao, L.J.1
Keerthi, S.S.2
Ong, C.J.3
Zhang, J.Q.4
Periyathamby, U.5
Fu, X.J.6
Lee, H.P.7
-
14
-
-
85040175609
-
Resilient distributed datasets: A fault-Tolerant abstraction for in-memory cluster computing
-
M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica, "Resilient distributed datasets: A fault-Tolerant abstraction for in-memory cluster computing, " in Proc. USENIX Conf. Networked Systems Design and Implementation, 2012.
-
(2012)
Proc. USENIX Conf. Networked Systems Design and Implementation
-
-
Zaharia, M.1
Chowdhury, M.2
Das, T.3
Dave, A.4
Ma, J.5
McCauley, M.6
Franklin, M.J.7
Shenker, S.8
Stoica, I.9
-
16
-
-
84959859043
-
High-performance extreme learning machines: A complete toolbox for big data applications
-
A. Akusok, K. M. Bjork, Y. Miche, and A. Lendasse, "High-performance extreme learning machines: A complete toolbox for big data applications, " IEEE Access, vol. 3, pp. 1011-1025, 2015.
-
(2015)
IEEE Access
, vol.3
, pp. 1011-1025
-
-
Akusok, A.1
Bjork, K.M.2
Miche, Y.3
Lendasse, A.4
-
17
-
-
85085251984
-
Spark: Cluster computing with working sets
-
M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, "Spark: Cluster computing with working sets, " in Proc. USENIX Conf. Hot Topics in Cloud Computing, 2010.
-
(2010)
Proc. USENIX Conf. Hot Topics in Cloud Computing
-
-
Zaharia, M.1
Chowdhury, M.2
Franklin, M.J.3
Shenker, S.4
Stoica, I.5
-
18
-
-
84939199851
-
Big data analytics in the cloud: Spark on hadoop vs MPI/openMP on Beowulf
-
Aug
-
J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, "Big data analytics in the cloud: Spark on hadoop vs MPI/openMP on Beowulf, " Procedia Comp. Sci., vol. 53, pp. 121-130, Aug. 2015.
-
(2015)
Procedia Comp. Sci
, vol.53
, pp. 121-130
-
-
Reyes-Ortiz, J.L.1
Oneto, L.2
Anguita, D.3
-
20
-
-
0000245743
-
Statistical modeling: The two cultures (with comments and a rejoinder by the author)
-
L. Breiman, "Statistical modeling: The two cultures (with comments and a rejoinder by the author), " Stat. Sci., vol. 16, no. 3, pp. 199-231, 2001.
-
(2001)
Stat. Sci
, vol.16
, Issue.3
, pp. 199-231
-
-
Breiman, L.1
-
21
-
-
84888424872
-
Data science and prediction
-
V. Dhar, "Data science and prediction, " Commun. ACM, vol. 56, no. 12, pp. 64-73, 2013.
-
(2013)
Commun ACM
, vol.56
, Issue.12
, pp. 64-73
-
-
Dhar, V.1
-
22
-
-
0032594959
-
An overview of statistical learning theory
-
V. N. Vapnik, "An overview of statistical learning theory, " IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 988-999, 1999.
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
23
-
-
0035397715
-
Rademacher penalties and structural risk minimization
-
V. Koltchinskii, "Rademacher penalties and structural risk minimization, " IEEE Trans. Inform. Theory, vol. 47, no. 5, pp. 1902-1914, 2001.
-
(2001)
IEEE Trans. Inform. Theory
, vol.47
, Issue.5
, pp. 1902-1914
-
-
Koltchinskii, V.1
-
24
-
-
26444592981
-
Local rademacher complexities
-
P. L. Bartlett, O. Bousquet, and S. Mendelson, "Local rademacher complexities, " Ann. Stat., vol. 33, no. 4, pp. 1497-1537, 2005.
-
(2005)
Ann. Stat
, vol.33
, Issue.4
, pp. 1497-1537
-
-
Bartlett, P.L.1
Bousquet, O.2
Mendelson, S.3
-
26
-
-
84939779196
-
Fully empirical and data-dependent stability-based bounds
-
L. Oneto, A. Ghio, S. Ridella, and D. Anguita, "Fully empirical and data-dependent stability-based bounds, " IEEE Trans. Cybernetics, vol. 45, no. 9, pp. 1913-1926, 2015.
-
(2015)
IEEE Trans. Cybernetics
, vol.45
, Issue.9
, pp. 1913-1926
-
-
Oneto, L.1
Ghio, A.2
Ridella, S.3
Anguita, D.4
-
27
-
-
0021518106
-
A theory of the learnable
-
L. G. Valiant, "A theory of the learnable, " Commun. ACM, vol. 27, no. 11, pp. 1134-1142, 1984.
-
(1984)
Commun ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
-
28
-
-
0036643049
-
Model selection and error estimation
-
P. L. Bartlett, S. Boucheron, and G. Lugosi, "Model selection and error estimation, " Machine Learn., vol. 48, no. 1-3, pp. 85-113, 2002.
-
(2002)
Machine Learn
, vol.48
, Issue.1-3
, pp. 85-113
-
-
Bartlett, P.L.1
Boucheron, S.2
Lugosi, G.3
-
29
-
-
21844462365
-
Tutorial on practical prediction theory for classification
-
J. Langford, "Tutorial on practical prediction theory for classification, " J. Machine Learn. Res., vol. 6, no. 1, pp. 273, 2006.
-
(2006)
J. Machine Learn. Res
, vol.6
, Issue.1
, pp. 273
-
-
Langford, J.1
-
30
-
-
84875879529
-
In-sample and out-of-sample model selection and error estimation for support vector machines
-
D. Anguita, A. Ghio, L. Oneto, and S. Ridella, "In-sample and out-of-sample model selection and error estimation for support vector machines, " IEEE Trans. Neural Network Learn. Syst., vol. 23, no. 9, pp. 1390-1406, 2012.
-
(2012)
IEEE Trans. Neural Network Learn. Syst
, vol.23
, Issue.9
, pp. 1390-1406
-
-
Anguita, D.1
Ghio, A.2
Oneto, L.3
Ridella, S.4
-
31
-
-
84899050913
-
Jumping NLP curves: A review of natural language processing research
-
E. Cambria and B. White, "Jumping NLP curves: A review of natural language processing research, " IEEE Comput. Intell. Mag., vol. 9, no. 2, pp. 48-57, 2014.
-
(2014)
IEEE Comput. Intell. Mag
, vol.9
, Issue.2
, pp. 48-57
-
-
Cambria, E.1
White, B.2
-
32
-
-
84880172556
-
Knowledge-based approaches to concept-level sentiment analysis
-
E. Cambria, B. Schuller, B. Liu, H. Wang, and C. Havasi, "Knowledge-based approaches to concept-level sentiment analysis, " IEEE Intell. Syst., vol. 28, no. 2, pp. 12-14, 2013.
-
(2013)
IEEE Intell. Syst
, vol.28
, Issue.2
, pp. 12-14
-
-
Cambria, E.1
Schuller, B.2
Liu, B.3
Wang, H.4
Havasi, C.5
-
33
-
-
84884180388
-
Statistical approaches to concept-level sentiment analysis
-
E. Cambria, B. Schuller, B. Liu, H. Wang, and C. Havasi, "Statistical approaches to concept-level sentiment analysis, " IEEE Intell. Syst., vol. 28, no. 3, pp. 6-9, 2013.
-
(2013)
IEEE Intell. Syst
, vol.28
, Issue.3
, pp. 6-9
-
-
Cambria, E.1
Schuller, B.2
Liu, B.3
Wang, H.4
Havasi, C.5
-
34
-
-
84893375456
-
Frame-based detection of opinion holders and topics: A model and a tool
-
A. Gangemi, V. Presutti, and D. Reforgiato, "Frame-based detection of opinion holders and topics: A model and a tool, " IEEE Comput. Intell. Mag., vol. 9, no. 1, pp. 20-30, 2014.
-
(2014)
IEEE Comput. Intell. Mag
, vol.9
, Issue.1
, pp. 20-30
-
-
Gangemi, A.1
Presutti, V.2
Reforgiato, D.3
-
36
-
-
84908152207
-
SenticNet 3: A common and common-sense knowledge base for cognition-driven sentiment analysis
-
E. Cambria, D. Olsher, and D. Rajagopal, "SenticNet 3: A common and common-sense knowledge base for cognition-driven sentiment analysis, " in Proc. AAAI, Quebec, 2014, pp. 1515-1521.
-
(2014)
Proc. AAAI, Quebec
, pp. 1515-1521
-
-
Cambria, E.1
Olsher, D.2
Rajagopal, D.3
-
37
-
-
84944871800
-
Sentiment data flow analysis by means of dynamic linguistic patterns
-
S. Poria, E. Cambria, A. Gelbukh, F. Bisio, and A. Hussain, "Sentiment data flow analysis by means of dynamic linguistic patterns, " IEEE Comput. Intell. Mag., vol. 10, no. 4, pp. 26-36, 2015.
-
(2015)
IEEE Comput. Intell. Mag
, vol.10
, Issue.4
, pp. 26-36
-
-
Poria, S.1
Cambria, E.2
Gelbukh, A.3
Bisio, F.4
Hussain, A.5
-
38
-
-
85090890113
-
Coooolll: A deep learning system for twitter sentiment classification
-
D. Tang, F. Wei, B. Qin, T. Liu, and M. Zhou, "Coooolll: A deep learning system for twitter sentiment classification, " in Proc. 8th Int. Workshop on Semantic Evaluation, 2014.
-
(2014)
Proc. 8th Int. Workshop on Semantic Evaluation
-
-
Tang, D.1
Wei, F.2
Qin, B.3
Liu, T.4
Zhou, M.5
-
40
-
-
84906924350
-
Learning sentiment-specific word embedding for Twitter sentiment classification
-
D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, "Learning sentiment-specific word embedding for Twitter sentiment classification, " in Proc. Annu. Meeting of the Association for Computational Linguistics, 2014.
-
(2014)
Proc. Annu. Meeting of the Association for Computational Linguistics
-
-
Tang, D.1
Wei, F.2
Yang, N.3
Zhou, M.4
Liu, T.5
Qin, B.6
-
41
-
-
84943617823
-
Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis
-
S. Poria, E. Cambria, and A. Gelbukh, "Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis, " in Proc. EMNLP, 2015, pp. 2539-2544.
-
(2015)
Proc. EMNLP
, pp. 2539-2544
-
-
Poria, S.1
Cambria, E.2
Gelbukh, A.3
-
42
-
-
11144336199
-
The nature of statistical learning theory
-
V. Cherkassky, "The nature of statistical learning theory, " IEEE Trans. Neural Networks, vol. 8, no. 6, pp. 1564-1564, 1997.
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, Issue.6
, pp. 1564
-
-
Cherkassky, V.1
-
43
-
-
84860443491
-
From databases to big data
-
S. Madden, "From databases to big data, " IEEE Internet Comput., no. 3, pp. 4-6, 2012.
-
(2012)
IEEE Internet Comput
, Issue.3
, pp. 4-6
-
-
Madden, S.1
-
44
-
-
84963740967
-
Big data analysis: Apache spark perspective
-
A. G. Shoro and T. R. Soomro, "Big data analysis: Apache spark perspective, " Global J. Comp. Sci. Technol., vol. 15, no. 1, 2015.
-
(2015)
Global J. Comp. Sci. Technol
, vol.15
, Issue.1
-
-
Shoro, A.G.1
Soomro, T.R.2
-
45
-
-
1842733197
-
Are loss functions all the same?
-
L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri, "Are loss functions all the same?, " Neural Computat., vol. 16, no. 5, pp. 1063-1076, 2004.
-
(2004)
Neural Computat
, vol.16
, Issue.5
, pp. 1063-1076
-
-
Rosasco, L.1
De Vito, E.2
Caponnetto, A.3
Piana, M.4
Verri, A.5
-
47
-
-
84919336343
-
Extreme learning machines
-
E. Cambria and G. B. Huang, "Extreme learning machines, " IEEE Intell. Syst., vol. 28, no. 6, pp. 30-59, 2013.
-
(2013)
IEEE Intell. Syst
, vol.28
, Issue.6
, pp. 30-59
-
-
Cambria, E.1
Huang, G.B.2
-
48
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: Theory and applications, " Neurocomputing, vol. 70, no. 1, pp. 489-501, 2006.
-
(2006)
Neurocomputing
, vol.70
, Issue.1
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
49
-
-
0030817465
-
Circular backpropagation networks for classification
-
S. Ridella, S. Rovetta, and R. Zunino, "Circular backpropagation networks for classification, " IEEE Trans. Neural Networks, vol. 8, no. 1, pp. 84-97, 1997.
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, Issue.1
, pp. 84-97
-
-
Ridella, S.1
Rovetta, S.2
Zunino, R.3
-
51
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
G. B. Huang, L. Chen, and C. K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes, " IEEE Trans. Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.B.1
Chen, L.2
Siew, C.K.3
-
52
-
-
84951000029
-
A learning scheme based on similarity functions for affective common-sense reasoning
-
F. Bisio, P. Gastaldo, R. Zunino, and E. Cambria, "A learning scheme based on similarity functions for affective common-sense reasoning, " in Proc. IJCNN, 2015, pp. 2476-2481.
-
(2015)
Proc. IJCNN
, pp. 2476-2481
-
-
Bisio, F.1
Gastaldo, P.2
Zunino, R.3
Cambria, E.4
-
53
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
G. B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification, " IEEE Trans. Syst. Man Cybern. B, vol. 42, no. 2, pp. 513-529, 2012.
-
(2012)
IEEE Trans. Syst. Man Cybern. B
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
54
-
-
84880533620
-
Shark: SQL and rich analytics at scale
-
R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica, "Shark: Sql and rich analytics at scale, " in Proc. ACM SIGMOD Int. Conf. Management of Data, 2013.
-
(2013)
Proc ACM SIGMOD Int. Conf. Management of Data
-
-
Xin, R.S.1
Rosen, J.2
Zaharia, M.3
Franklin, M.J.4
Shenker, S.5
Stoica, I.6
-
55
-
-
18144430505
-
Life-cycle cost analysis for infrastructure systems: Life cycle cost vs. Safety level vs. Service life
-
H. Furuta, T. Kameda, Y. Fukuda, and D. M. Frangopol, "Life-cycle cost analysis for infrastructure systems: Life cycle cost vs. safety level vs. service life, " in Proc. Life-Cycle Performance of Deteriorating Structures: Assessment, Design and Management, 2004.
-
(2004)
Proc. Life-Cycle Performance of Deteriorating Structures: Assessment, Design and Management
-
-
Furuta, H.1
Kameda, T.2
Fukuda, Y.3
Frangopol, D.M.4
-
57
-
-
84929365717
-
-
Sebastopol, CA OReilly Media
-
H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark. Sebastopol, CA: OReilly Media, 2015.
-
(2015)
Learning Spark
-
-
Karau, H.1
Konwinski, A.2
Wendell, P.3
Zaharia, M.4
-
60
-
-
34548536008
-
On the degrees of freedom of the lasso
-
H. Zou, T. Hastie, and R. Tibshirani, "On the degrees of freedom of the lasso, " Ann. Stat., vol. 35, no. 5, pp. 2173-2192, 2007.
-
(2007)
Ann. Stat
, vol.35
, Issue.5
, pp. 2173-2192
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
-
61
-
-
62549127689
-
Elastic-net regularization in learning theory
-
C. De Mol, E. De Vito, and L. Rosasco, "Elastic-net regularization in learning theory, " J. Complex., vol. 25, no. 2, pp. 201-230, 2009.
-
(2009)
J. Complex
, vol.25
, Issue.2
, pp. 201-230
-
-
De Mol, C.1
De Vito, E.2
Rosasco, L.3
-
63
-
-
9444250658
-
Regularized least-squares classification
-
R. Rifkin, G. Yeo, and T. Poggio, "Regularized least-squares classification, " Nato Sci. Ser. Sub Ser. III Comp. Syst. Sci., vol. 190, pp. 131-154, 2003.
-
(2003)
Nato Sci. Ser. Sub Ser. III Comp. Syst. Sci
, vol.190
, pp. 131-154
-
-
Rifkin, R.1
Yeo, G.2
Poggio, T.3
-
64
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers, " Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
-
(1999)
Neural Process. Lett
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
65
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin, "LIBLINEAR: A library for large linear classification, " J. Machine Learn. Res., vol. 9, pp. 1871-1874, 2008.
-
(2008)
J. Machine Learn. Res
, vol.9
, pp. 1871-1874
-
-
Fan, R.E.1
Chang, K.W.2
Hsieh, C.J.3
Wang, X.R.4
Lin, C.J.5
-
66
-
-
84898932856
-
Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping
-
R. Caruana, S. Lawrence, and G. Lee, "Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping, " in Proc. Neural Information Processing Systems, 2001.
-
(2001)
Proc. Neural Information Processing Systems
-
-
Caruana, R.1
Lawrence, S.2
Lee, G.3
-
67
-
-
0032099978
-
Automatic early stopping using cross validation: Quantifying the criteria
-
L. Prechelt, "Automatic early stopping using cross validation: quantifying the criteria, " Neural Networks, vol. 11, no. 4, pp. 761-767, 1998.
-
(1998)
Neural Networks
, vol.11
, Issue.4
, pp. 761-767
-
-
Prechelt, L.1
-
68
-
-
84939493213
-
Comparing apache spark and map reduce with performance analysis using k-means
-
S. Gopalani and R. Arora, "Comparing apache spark and map reduce with performance analysis using k-means, " Int. J. Comp. Appl., vol. 113, no. 1, 2015.
-
(2015)
Int. J. Comp. Appl
, vol.113
, Issue.1
-
-
Gopalani, S.1
Arora, R.2
-
69
-
-
77956649096
-
A survey of cross-validation procedures for model selection
-
S. Arlot and A. Celisse, "A survey of cross-validation procedures for model selection, " Stat. Survey., vol. 4, no. 2010, pp. 40-79, 2010.
-
(2010)
Stat. Survey
, vol.4
, Issue.2010
, pp. 40-79
-
-
Arlot, S.1
Celisse, A.2
-
70
-
-
0037399538
-
Pac-Bayesian stochastic model selection
-
D. A. McAllester, "Pac-bayesian stochastic model selection, " Machine Learn., vol. 51, no. 1, pp. 5-21, 2003.
-
(2003)
Machine Learn
, vol.51
, Issue.1
, pp. 5-21
-
-
McAllester, D.A.1
-
71
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection, " in Proc. Int. Joint Conf. Artificial Intelligence, San Francisco, CA, 1995, pp. 1137-1143.
-
(1995)
Proc. Int. Joint Conf. Artificial Intelligence, San Francisco, CA
, pp. 1137-1143
-
-
Kohavi, R.1
-
72
-
-
76749118521
-
Model selection: Beyond the Bayesian/frequentist divide
-
Mar
-
I. Guyon, A. Saffari, G. Dror, and G. Cawley, "Model selection: Beyond the Bayesian/frequentist divide, " J. Machine Learn. Res., vol. 11, pp. 61-87, Mar. 2010.
-
(2010)
J. Machine Learn. Res
, vol.11
, pp. 61-87
-
-
Guyon, I.1
Saffari, A.2
Dror, G.3
Cawley, G.4
-
73
-
-
80054758777
-
In-sample model selection for support vector machines
-
San Jose, CA
-
D. Anguita, A. Ghio, L. Oneto, and S. Ridella, "In-sample model selection for support vector machines, " in Proc. Int. Joint Conf. Neural Networks, San Jose, CA, 2011, pp. 1154-1161.
-
(2011)
Proc. Int. Joint Conf. Neural Networks
, pp. 1154-1161
-
-
Anguita, D.1
Ghio, A.2
Oneto, L.3
Ridella, S.4
-
75
-
-
84929104006
-
Global rademacher complexity bounds: From slow to fast convergence rates
-
Apr
-
L. Oneto, A. Ghio, S. Ridella, and D. Anguita, "Global rademacher complexity bounds: From slow to fast convergence rates, " Neural Processing Letter, vol. 43, no. 2, pp. 567-602, Apr. 2016.
-
(2016)
Neural Processing Letter
, vol.43
, Issue.2
, pp. 567-602
-
-
Oneto, L.1
Ghio, A.2
Ridella, S.3
Anguita, D.4
-
76
-
-
84923326912
-
Local rademacher complexity: Sharper risk bounds with and without unlabeled samples
-
May
-
L. Oneto, A. Ghio, S. Ridella, and D. Anguita, "Local rademacher complexity: Sharper risk bounds with and without unlabeled samples, " Neural Networks, vol. 65, pp. 115-125, May 2015.
-
(2015)
Neural Networks
, vol.65
, pp. 115-125
-
-
Oneto, L.1
Ghio, A.2
Ridella, S.3
Anguita, D.4
-
78
-
-
84873278768
-
Tighter pac-bayes bounds through distribution-dependent priors
-
G. Lever, F. Laviolette, and J. Shawe-Taylor, "Tighter pac-bayes bounds through distribution-dependent priors, " Theoretic. Comp. Sci., vol. 473, pp. 4-28, 2013.
-
(2013)
Theoretic. Comp. Sci
, vol.473
, pp. 4-28
-
-
Lever, G.1
Laviolette, F.2
Shawe-Taylor, J.3
-
79
-
-
0029521676
-
Sample compression, learnability, and the vapnik-chervonenkis dimension
-
S. Floyd and M. Warmuth, "Sample compression, learnability, and the vapnik-chervonenkis dimension, " Machine Learn., vol. 21, no. 3, pp. 269-304, 1995.
-
(1995)
Machine Learn
, vol.21
, Issue.3
, pp. 269-304
-
-
Floyd, S.1
Warmuth, M.2
-
80
-
-
1842420581
-
General conditions for predictivity in learning theory
-
T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi, "General conditions for predictivity in learning theory, " Nature, vol. 428, no. 6981, pp. 419-422, 2004.
-
(2004)
Nature
, vol.428
, Issue.6981
, pp. 419-422
-
-
Poggio, T.1
Rifkin, R.2
Mukherjee, S.3
Niyogi, P.4
-
81
-
-
11344278864
-
In-sample or out-of-sample tests of predictability: Which one should we use?
-
A. Inoue and L. Kilian, "In-sample or out-of-sample tests of predictability: Which one should we use?" Econometric Rev., vol. 23, no. 4, pp. 371-402, 2005.
-
(2005)
Econometric Rev
, vol.23
, Issue.4
, pp. 371-402
-
-
Inoue, A.1
Kilian, L.2
-
82
-
-
77957765197
-
Facial expression recognition in jaffe dataset based on Gaussian process classification
-
F. Cheng, J. Yu, and H. Xiong, "Facial expression recognition in jaffe dataset based on gaussian process classification, " IEEE Trans. Neural Networks, vol. 21, no. 10, pp. 1685-1690, 2010.
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, Issue.10
, pp. 1685-1690
-
-
Cheng, F.1
Yu, J.2
Xiong, H.3
-
83
-
-
79961164082
-
K-fold cross validation for error rate estimate in support vector machines
-
D. Anguita, A. Ghio, S. Ridella, and D. Sterpi, "K-fold cross validation for error rate estimate in support vector machines, " in Proc. Int. Conf. Data Mining, 2009.
-
(2009)
Proc. Int. Conf. Data Mining
-
-
Anguita, D.1
Ghio, A.2
Ridella, S.3
Sterpi, D.4
-
84
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
W. Hoeffding, "Probability inequalities for sums of bounded random variables, " J. Am. Stat. Assoc., vol. 58, no. 301, pp. 13-30, 1963.
-
(1963)
J. Am. Stat. Assoc
, vol.58
, Issue.301
, pp. 13-30
-
-
Hoeffding, W.1
-
85
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
Mar
-
P. L. Bartlett and S. Mendelson, "Rademacher and gaussian complexities: Risk bounds and structural results, " J. Machine Learn. Res., vol. 3, pp. 463-482, Mar. 2003.
-
(2003)
J. Machine Learn. Res
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
86
-
-
33746061490
-
Stability results in learning theory
-
A. Rakhlin, S. Mukherjee, and T. Poggio, "Stability results in learning theory, " Analysis Appl, vol. 3, no. 4, pp. 397-417, 2005.
-
(2005)
Analysis Appl
, vol.3
, Issue.4
, pp. 397-417
-
-
Rakhlin, A.1
Mukherjee, S.2
Poggio, T.3
-
87
-
-
84905910853
-
A scalable bootstrap for massive data
-
A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan, "A scalable bootstrap for massive data, " J. R. Stat. Soc. B Stat. Methodol., vol. 76, no. 4, pp. 795-816, 2014.
-
(2014)
J. R. Stat. Soc. B Stat. Methodol
, vol.76
, Issue.4
, pp. 795-816
-
-
Kleiner, A.1
Talwalkar, A.2
Sarkar, P.3
Jordan, M.I.4
-
88
-
-
84867129586
-
The big data bootstrap
-
A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan, "The big data bootstrap, " in Proc. Int. Conf. Machine Learning, 2012.
-
(2012)
Proc. Int. Conf. Machine Learning
-
-
Kleiner, A.1
Talwalkar, A.2
Sarkar, P.3
Jordan, M.I.4
-
89
-
-
84897072551
-
Bootstrapping big data
-
A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan, "Bootstrapping big data, " in Proc. Advances in Neural Information Processing Systems, Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale, 2011.
-
(2011)
Proc. Advances in Neural Information Processing Systems, Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale
-
-
Kleiner, A.1
Talwalkar, A.2
Sarkar, P.3
Jordan, M.I.4
-
90
-
-
84961806564
-
Model selection for big data: Algorithmic stability and bag of little bootstraps on GPUs
-
L. Oneto, B. Pilarz, A. Ghio, and D. Anguita, "Model selection for big data: Algorithmic stability and bag of little bootstraps on gpus, " in Proc. Eur. Symp. Artificial Neural Networks, Computational Intelligence and Machine Learning, 2015.
-
(2015)
Proc. Eur. Symp. Artificial Neural Networks, Computational Intelligence and Machine Learning
-
-
Oneto, L.1
Pilarz, B.2
Ghio, A.3
Anguita, D.4
-
91
-
-
0000149970
-
Statistical mechanics of support vector networks
-
R. Dietrich, M. Opper, and H. Sompolinsky, "Statistical mechanics of support vector networks, " Phys. Rev. Lett., vol. 82, no. 14, pp. 2975, 1999.
-
(1999)
Phys. Rev. Lett
, vol.82
, Issue.14
, pp. 2975
-
-
Dietrich, R.1
Opper, M.2
Sompolinsky, H.3
-
92
-
-
84963783209
-
Affective computing and sentiment analysis
-
E. Cambria, "Affective computing and sentiment analysis, " IEEE Intell. Syst., vol. 31, no. 2, pp. 102-107, 2016.
-
(2016)
IEEE Intell. Syst
, vol.31
, Issue.2
, pp. 102-107
-
-
Cambria, E.1
-
93
-
-
84969228568
-
An ELM-based model for affective analogical reasoning
-
Feb
-
E. Cambria, P. Gastaldo, F. Bisio, and R. Zunino, "An ELM-based model for affective analogical reasoning, " Neurocomputing, vol. 149, no. A, pp. 443-455, Feb. 2015.
-
(2015)
Neurocomputing
, vol.149
, pp. 443-455
-
-
Cambria, E.1
Gastaldo, P.2
Bisio, F.3
Zunino, R.4
-
94
-
-
84959482068
-
AffectiveSpace 2: Enabling affective intuition for concept-level sentiment analysis
-
Austin, TX
-
E. Cambria, J. Fu, F. Bisio, and S. Poria, "AffectiveSpace 2: Enabling affective intuition for concept-level sentiment analysis, " in Proc. AAAI, Austin, TX, 2015, pp. 508-514.
-
(2015)
Proc. AAAI
, pp. 508-514
-
-
Cambria, E.1
Fu, J.2
Bisio, F.3
Poria, S.4
-
96
-
-
84928102005
-
New trends of learning in computational intelligence [guest editorial]
-
G. Huang, E. Cambria, K. Toh, B. Widrow, and Z. Xu, "New trends of learning in computational intelligence [guest editorial], " IEEE Comput. Intell. Mag., vol. 10, no. 2, pp. 16-17, 2015.
-
(2015)
IEEE Comput. Intell. Mag
, vol.10
, Issue.2
, pp. 16-17
-
-
Huang, G.1
Cambria, E.2
Toh, K.3
Widrow, B.4
Xu, Z.5
|