메뉴 건너뛰기




Volumn 11, Issue 4, 1998, Pages 761-767

Automatic early stopping using cross validation: Quantifying the criteria

Author keywords

Cross validation; Early stopping; Empirical study; Generalization; Overfitting; Supervised learning

Indexed keywords

APPROXIMATION THEORY; COMPUTER ARCHITECTURE; CONVERGENCE OF NUMERICAL METHODS; LEARNING SYSTEMS;

EID: 0032099978     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(98)00010-0     Document Type: Article
Times cited : (861)

References (22)
  • 1
    • 0001927486 scopus 로고
    • Temporal evolution of generalization during learning in linear networks
    • Baldi P., Chauvin Y. Temporal evolution of generalization during learning in linear networks. Neural Computation. 3:1991;589-603.
    • (1991) Neural Computation , vol.3 , pp. 589-603
    • Baldi, P.1    Chauvin, Y.2
  • 5
    • 0003578240 scopus 로고
    • An empirical study of learning speed in back-propagation networks
    • School of Computer Science. Carnegie Mellon University Pittsburgh, PA
    • Fahlman, S.E., 1988. An empirical study of learning speed in back-propagation networks. Technical Report CMU-CS-88-162, School of Computer Science. Carnegie Mellon University Pittsburgh, PA.
    • (1988) Technical Report CMU-CS-88-162
    • Fahlman, S.E.1
  • 6
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • In: Touretzky, D.S. (Ed.), Morgan Kaufman, San Mateo, CA
    • Fahlman, S.E. & Lebiere, C., 1990. The cascade-correlation learning architecture. In: Touretzky, D.S. (Ed.), Advances in Neural Information Processing Systems 2, Morgan Kaufman, San Mateo, CA, pp. 524-532.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 7
    • 0027294340 scopus 로고
    • Improving model selection by nonconvergent methods
    • Finnoff W., Hergert F., Zimmermann H.G. Improving model selection by nonconvergent methods. Neural Networks. 6:1993;771-783.
    • (1993) Neural Networks , vol.6 , pp. 771-783
    • Finnoff, W.1    Hergert, F.2    Zimmermann, H.G.3
  • 10
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • Morgan Kaufman, San Mateo, CA
    • Hassibi, B. & Stork, D.G., 1993. Second order derivatives for network pruning: optimal brain surgeon. In: Advances in Neural Information Processing Systems 5, Morgan Kaufman, San Mateo, CA, pp. 164-171.
    • (1993) In: Advances in Neural Information Processing Systems , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 11
    • 0000029122 scopus 로고
    • A simple weight decay can improve generalization
    • Morgan Kaufman, San Mateo, CA
    • Krogh, A. & Hertz, J.A., 1992. A simple weight decay can improve generalization. In: Advances in Neural Information Processing Systems 4, Morgan Kaufman, San Mateo, CA, pp. 950-957.
    • (1992) In: Advances in Neural Information Processing Systems , vol.4 , pp. 950-957
    • Krogh, A.1    Hertz, J.A.2
  • 15
    • 0002595536 scopus 로고
    • Generalization and parameter estimation in feedforward nets: Some experiments
    • In: Touretzky, D.S. (Ed.), San Mateo, CA
    • Morgan, N. & Bourlard, H., 1990. Generalization and parameter estimation in feedforward nets: some experiments. In: Touretzky, D.S. (Ed.), Advances in Neural Information Processing Systems 2, San Mateo, CA, pp. 630-637.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 630-637
    • Morgan, N.1    Bourlard, H.2
  • 16
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weight-sharing
    • Nowlan S.J., Hinton G.E. Simplifying neural networks by soft weight-sharing. Neural Computation. 4(4):1992;473-493.
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 473-493
    • Nowlan, S.J.1    Hinton, G.E.2
  • 17
    • 0004114283 scopus 로고
    • PROBEN1 - a set of benchmarks and benchmarking rules for neural network training algorithms
    • Fakultät für Informatik, Universität Karlsruhe, Germany. Anonymous FTP: /pub/papers/techreports/1994/1994-21.ps.gz on ftp.ira.uka.de
    • Prechelt, L., 1994. PROBEN1 - a set of benchmarks and benchmarking rules for neural network training algorithms. Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, Germany. Anonymous FTP: /pub/papers/techreports/1994/1994-21.ps.gz on ftp.ira.uka.de.
    • (1994) Technical Report 21/94
    • Prechelt, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.