메뉴 건너뛰기




Volumn , Issue , 2013, Pages 13-24

Shark: SQL and rich analytics at scale

Author keywords

Data Warehouse; Databases; Hadoop; Machine Learning; Shark; Spark

Indexed keywords

COLUMN-ORIENTED; DATA ANALYSIS SYSTEM; DISTRIBUTED MEMORY; EXECUTION ENGINE; FAULT TOLERANCE PROPERTY; HADOOP; LEARNING PROGRAMS; SHARK;

EID: 84880533620     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2463676.2465288     Document Type: Conference Paper
Times cited : (333)

References (39)
  • 1
    • 84880551718 scopus 로고    scopus 로고
    • https://github.com/cloudera/impala.
  • 2
    • 84880556207 scopus 로고    scopus 로고
    • http://hadoop.apache.org/.
  • 3
    • 84880568960 scopus 로고    scopus 로고
    • http://aws.amazon.com/elasticmapreduce/.
  • 4
    • 79957809015 scopus 로고    scopus 로고
    • Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for analytical workloads
    • A. Abouzeid et al. Hadoopdb: an architectural hybrid of mapreduce and dbms technologies for analytical workloads. VLDB, 2009.
    • (2009) VLDB
    • Abouzeid, A.1
  • 5
    • 84891599477 scopus 로고    scopus 로고
    • Re-optimizing data-parallel computing
    • S. Agarwal et al. Re-optimizing data-parallel computing. In NSDI'12.
    • NSDI'12
    • Agarwal, S.1
  • 6
    • 84919827070 scopus 로고    scopus 로고
    • Pacman: Coordinated memory caching for parallel jobs
    • G. Ananthanarayanan et al. Pacman: Coordinated memory caching for parallel jobs. In NSDI, 2012.
    • (2012) NSDI
    • Ananthanarayanan, G.1
  • 7
    • 0039253775 scopus 로고    scopus 로고
    • Eddies: Continuously adaptive query processing
    • R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query processing. In SIGMOD, 2000.
    • (2000) SIGMOD
    • Avnur, R.1    Hellerstein, J.M.2
  • 8
    • 77954942463 scopus 로고    scopus 로고
    • Towards automatic optimization of mapreduce programs
    • S. Babu. Towards automatic optimization of mapreduce programs. In SoCC'10.
    • SoCC'10
    • Babu, S.1
  • 9
    • 79958269648 scopus 로고    scopus 로고
    • Asterix: Towards a scalable, semistructured data platform for evolving-world models
    • A. Behm et al. Asterix: towards a scalable, semistructured data platform for evolving-world models. Distributed and Parallel Databases, 29(3):185-216, 2011.
    • (2011) Distributed and Parallel Databases , vol.29 , Issue.3 , pp. 185-216
    • Behm, A.1
  • 10
    • 79957872898 scopus 로고    scopus 로고
    • Hyracks: A flexible and extensible foundation for data-intensive computing
    • V. Borkar et al. Hyracks: A flexible and extensible foundation for data-intensive computing. In ICDE'11.
    • ICDE'11
    • Borkar, V.1
  • 11
    • 79956351190 scopus 로고    scopus 로고
    • HaLoop: Efficient iterative data processing on large clusters
    • Y. Bu et al. HaLoop: efficient iterative data processing on large clusters. Proc. VLDB Endow., 2010.
    • (2010) Proc. VLDB Endow.
    • Bu, Y.1
  • 12
    • 84860560293 scopus 로고    scopus 로고
    • Scope: Easy and efficient parallel processing of massive data sets
    • R. Chaiken et al. Scope: easy and efficient parallel processing of massive data sets. VLDB, 2008.
    • (2008) VLDB
    • Chaiken, R.1
  • 13
    • 84862684677 scopus 로고    scopus 로고
    • Tenzing a sql implementation on the mapreduce framework
    • B. Chattopadhyay, et al Tenzing a sql implementation on the mapreduce framework. PVLDB, 4(12):1318-1327, 2011.
    • (2011) PVLDB , vol.4 , Issue.12 , pp. 1318-1327
    • Chattopadhyay, B.1
  • 14
    • 79957812355 scopus 로고    scopus 로고
    • Cheetah: A high performance, custom data warehouse on top of mapreduce
    • S. Chen. Cheetah: a high performance, custom data warehouse on top of mapreduce. VLDB, 2010.
    • (2010) VLDB
    • Chen, S.1
  • 17
    • 85030321143 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 18
    • 84862644049 scopus 로고    scopus 로고
    • Towards a unified architecture for in-rdbms analytics
    • X. Feng et al. Towards a unified architecture for in-rdbms analytics. In SIGMOD, 2012.
    • (2012) SIGMOD
    • Feng, X.1
  • 19
    • 80052587953 scopus 로고    scopus 로고
    • Handling data skew in mapreduce
    • B. Guffler et al. Handling data skew in mapreduce. In CLOSER'11.
    • CLOSER'11
    • Guffler, B.1
  • 20
    • 84880566361 scopus 로고    scopus 로고
    • Processing a trillion cells per mouse click
    • A. Hall et al. Processing a trillion cells per mouse click. VLDB.
    • VLDB
    • Hall, A.1
  • 21
    • 80053147709 scopus 로고    scopus 로고
    • Mesos: A platform for fine-grained resource sharing in the data center
    • B. Hindman et al. Mesos: A platform for fine-grained resource sharing in the data center. In NSDI'11.
    • NSDI'11
    • Hindman, B.1
  • 22
    • 35448961922 scopus 로고    scopus 로고
    • Dryad: Distributed data-parallel programs from sequential building blocks
    • M. Isard et al. Dryad: distributed data-parallel programs from sequential building blocks. SIGOPS, 2007.
    • (2007) SIGOPS
    • Isard, M.1
  • 23
    • 72249118633 scopus 로고    scopus 로고
    • Quincy: Fair scheduling for distributed computing clusters
    • M. Isard et al. Quincy: Fair scheduling for distributed computing clusters. In SOSP '09, 2009.
    • (2009) SOSP '09
    • Isard, M.1
  • 24
    • 70849091519 scopus 로고    scopus 로고
    • Distributed data-parallel computing using a high-level programming language
    • M. Isard and Y. Yu. Distributed data-parallel computing using a high-level programming language. In SIGMOD, 2009.
    • (2009) SIGMOD
    • Isard, M.1    Yu, Y.2
  • 25
    • 0032093823 scopus 로고    scopus 로고
    • Efficient mid-query re-optimization of sub-optimal query execution plans
    • N. Kabra and D. J. DeWitt. Efficient mid-query re-optimization of sub-optimal query execution plans. In SIGMOD, 1998.
    • (1998) SIGMOD
    • Kabra, N.1    DeWitt, J.D.2
  • 26
    • 84862648481 scopus 로고    scopus 로고
    • Skewtune: Mitigating skew in mapreduce applications
    • Y. Kwon et al. Skewtune: mitigating skew in mapreduce applications. In SIGMOD '12, 2012.
    • (2012) SIGMOD '12
    • Kwon, Y.1
  • 27
    • 84863735533 scopus 로고    scopus 로고
    • Distributed graphlab: A framework for machine learning and data mining in the cloud
    • Y. Low et al. Distributed graphlab: a framework for machine learning and data mining in the cloud. VLDB, 2012.
    • (2012) VLDB
    • Low, Y.1
  • 28
    • 77954723629 scopus 로고    scopus 로고
    • Pregel: A system for large-scale graph processing
    • G. Malewicz et al. Pregel: a system for large-scale graph processing. In SIGMOD, 2010.
    • (2010) SIGMOD
    • Malewicz, G.1
  • 29
    • 79958258284 scopus 로고    scopus 로고
    • Dremel: Interactive analysis of web-scale datasets
    • Sept
    • S. Melnik et al. Dremel: interactive analysis of web-scale datasets. Proc. VLDB Endow., 3:330-339, Sept 2010.
    • (2010) Proc. VLDB Endow. , vol.3 , pp. 330-339
    • Melnik, S.1
  • 30
    • 84989348963 scopus 로고    scopus 로고
    • The case for tiny tasks in compute clusters
    • K. Ousterhout et al. The case for tiny tasks in compute clusters. In HotOS'13.
    • HotOS'13
    • Ousterhout, K.1
  • 31
    • 70350512695 scopus 로고    scopus 로고
    • A comparison of approaches to large-scale data analysis
    • A. Pavlo et al. A comparison of approaches to large-scale data analysis. In SIGMOD, 2009.
    • (2009) SIGMOD
    • Pavlo, A.1
  • 32
    • 33745618477 scopus 로고    scopus 로고
    • C-store: A column-oriented dbms
    • M. Stonebraker et al. C-store: a column-oriented dbms. In VLDB'05.
    • VLDB'05
    • Stonebraker, M.1
  • 33
    • 84880516136 scopus 로고    scopus 로고
    • Mapreduce and parallel dbmss: Friends or foes?
    • M. Stonebraker et al. Mapreduce and parallel dbmss: friends or foes? Commun. ACM.
    • Commun. ACM
    • Stonebraker, M.1
  • 34
    • 77952775707 scopus 로고    scopus 로고
    • Hive - A petabyte scale data warehouse using hadoop
    • A. Thusoo et al. Hive - a petabyte scale data warehouse using hadoop. In ICDE, 2010.
    • (2010) ICDE
    • Thusoo, A.1
  • 36
    • 0032093705 scopus 로고    scopus 로고
    • Cost-based query scrambling for initial delays
    • T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-based query scrambling for initial delays. In SIGMOD, 1998.
    • (1998) SIGMOD
    • Urhan, T.1    Franklin, M.J.2    Amsaleg, L.3
  • 37
    • 77952779172 scopus 로고    scopus 로고
    • Osprey: Implementing mapreduce-style fault tolerance in a shared-nothing distributed database
    • C. Yang et al. Osprey: Implementing mapreduce-style fault tolerance in a shared-nothing distributed database. In ICDE, 2010.
    • (2010) ICDE
    • Yang, C.1
  • 38
    • 77954636142 scopus 로고    scopus 로고
    • Delay scheduling: A simple technique for achieving locality and fairness in cluster scheduling
    • M. Zaharia et al. Delay scheduling: A simple technique for achieving locality and fairness in cluster scheduling. In EuroSys 10, 2010.
    • (2010) EuroSys 10
    • Zaharia, M.1
  • 39
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
    • M. Zaharia et al. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. NSDI, 2012.
    • (2012) NSDI
    • Zaharia, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.