-
1
-
-
10944272650
-
Extreme learning machine: A new learning scheme of feedforward neural networks
-
Jul.
-
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks, " in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 2. Jul. 2004, pp. 985-990.
-
(2004)
Proc. IEEE Int. Joint Conf. Neural Netw
, vol.2
, pp. 985-990
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
2
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications, " Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231206000385
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
3
-
-
84859007933
-
Extreme learning machine for regression and multiclass classi-cation
-
Apr.
-
G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classi-cation, " IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/21984515
-
(2012)
IEEE Trans. Syst., Man, Cybern. B, Cybern
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
4
-
-
84919336343
-
Extreme learning machines [trends & controversies]
-
Nov/Dec.
-
E. Cambria et al., "Extreme learning machines [trends & controversies], " IEEE Intell. Syst., vol. 28, no. 6, pp. 30-59, Nov./Dec. 2013. [Online]. Available: http://sentic.net/extreme-learning-machines.pdf
-
(2013)
IEEE Intell. Syst
, vol.28
, Issue.6
, pp. 30-59
-
-
Cambria, E.1
-
5
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Jul.
-
G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes, " IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs-all.jsp?arnumber=1650244
-
(2006)
IEEE Trans. Neural Netw
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.-K.3
-
6
-
-
84929711432
-
What are extreme learning machines? Filling the gap between frank Rosenblatt's dream and John von Neumann's puzzle
-
G.-B. Huang, "What are extreme learning machines? Filling the gap between frank Rosenblatt's dream and John von Neumann's puzzle, " Cognit. Comput., vol. 7, no. 3, pp. 263-278, 2015.
-
(2015)
Cognit. Comput.
, vol.7
, Issue.3
, pp. 263-278
-
-
Huang, G.-B.1
-
7
-
-
84906948723
-
An insight into extreme learning machines: Random neurons, random features and kernels
-
G.-B. Huang, "An insight into extreme learning machines: Random neurons, random features and kernels, " Cognit. Comput., vol. 6, no. 3, pp. 376-390, 2014.
-
(2014)
Cognit. Comput.
, vol.6
, Issue.3
, pp. 376-390
-
-
Huang, G.-B.1
-
8
-
-
0024944645
-
An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks
-
H. White, "An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks, " in Proc. Int. Joint Conf. Neural Netw. (IJCNN), vol. 2. 1989, pp. 451-455.
-
(1989)
Proc. Int. Joint Conf. Neural Netw. (IJCNN)
, vol.2
, pp. 451-455
-
-
White, H.1
-
9
-
-
67649359701
-
-
G. Elliott, C. W. J. Granger, and A. Timmermann, Eds. Amsterdam, The Netherlands: Elsevier ch. 9
-
H. White, Approximate Nonlinear Forecasting Methods (Handbook of Economic Forecasting), vol. 1, G. Elliott, C. W. J. Granger, and A. Timmermann, Eds. Amsterdam, The Netherlands: Elsevier, 2006, ch. 9, pp. 459-512. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1574070605010098
-
(2006)
Approximate Nonlinear Forecasting Methods (Handbook of Economic Forecasting)
, vol.1
, pp. 459-512
-
-
White, H.1
-
10
-
-
0028420218
-
Learning and generalization characteristics of the random vector functional-link net
-
Y.-H. Pao, G.-H. Park, and D. J. Sobajic, "Learning and generalization characteristics of the random vector functional-link net, " Neurocomputing, vol. 6, no. 2, pp. 163-180, 1994. [Online]. Available: http://www. sciencedirect.com/science/article/pii/0925231294900531
-
(1994)
Neurocomputing
, vol.6
, Issue.2
, pp. 163-180
-
-
Pao, Y.-H.1
Park, G.-H.2
Sobajic, D.J.3
-
11
-
-
85051374302
-
Feedforward neural networks with random weights
-
Aug/Sep.
-
W. F. Schmidt, M. A. Kraaijveld, and R. P. W. Duin, "Feedforward neural networks with random weights, " in Proc. 11th IAPR Int. Conf. Pattern Recognit., vol. 2. Aug./Sep. 1992, pp. 1-4.
-
(1992)
Proc. 11th IAPR Int. Conf. Pattern Recognit.
, vol.2
, pp. 1-4
-
-
Schmidt, W.F.1
Kraaijveld, M.A.2
Duin, R.P.W.3
-
12
-
-
0029403793
-
Stochastic choice of basis functions in adaptive function approximation and the functional-link net
-
Nov.
-
B. Igelnik and Y.-H. Pao, "Stochastic choice of basis functions in adaptive function approximation and the functional-link net, " IEEE Trans. Neural Netw., vol. 6, no. 6, pp. 1320-1329, Nov. 1995.
-
(1995)
IEEE Trans. Neural Netw.
, vol.6
, Issue.6
, pp. 1320-1329
-
-
Igelnik, B.1
Pao, Y.-H.2
-
14
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
Nov.
-
F. Rosenblatt, "The perceptron: A probabilistic model for information storage and organization in the brain, " Psychol. Rev., vol. 65, no. 6, pp. 386-408, Nov. 1958. [Online]. Available: http://www.ncbi. nlm.nih.gov/pubmed/13602029
-
(1958)
Psychol. Rev.
, vol.65
, Issue.6
, pp. 386-408
-
-
Rosenblatt, F.1
-
15
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, "Support-vector networks, " Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995. [Online]. Available: http://www. springerlink.com/index/K238JX04HM87J80G.pdf
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
16
-
-
33645007988
-
Can threshold networks be trained directly
-
Mar.
-
G.-B. Huang, Q.-Y. Zhu, K. Z. Mao, C.-K. Siew, P. Saratchandran, and N. Sundararajan, "Can threshold networks be trained directly?" IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 3, pp. 187-191, Mar. 2006. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs-all. jsp?arnumber=1605431
-
(2006)
IEEE Trans. Circuits Syst. II, Exp. Briefs
, vol.53
, Issue.3
, pp. 187-191
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Mao, K.Z.3
Siew, C.-K.4
Saratchandran, P.5
Sundararajan, N.6
-
17
-
-
34748873053
-
Multi-label classi-cation: An overview
-
G. Tsoumakas and I. Katakis, "Multi-label classi-cation: An overview, " Int. J. Data Warehousing Mining, vol. 3, no. 3, pp. 1-13, 2007.
-
(2007)
Int. J. Data Warehousing Mining
, vol.3
, Issue.3
, pp. 1-13
-
-
Tsoumakas, G.1
Katakis, I.2
-
18
-
-
84904651375
-
The emerging big dimensionality
-
Aug.
-
Y. Zhai, Y.-S. Ong, and I.W. Tsang, "The emerging big dimensionality, "' IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 14-26, Aug. 2014.
-
(2014)
IEEE Comput. Intell. Mag
, vol.9
, Issue.3
, pp. 14-26
-
-
Zhai, Y.1
Ong, Y.-S.2
Tsang, I.W.3
-
19
-
-
84906946075
-
A two-stage methodology using K-NN and false-positive minimizing ELM for nominal data classi-cation
-
A. Akusok, Y. Miche, J. Hegedus, R. Nian, and A. Lendasse, "A two-stage methodology using K-NN and false-positive minimizing ELM for nominal data classi-cation, " Cognit. Comput., vol. 6, no. 3, pp. 432-445, 2014.
-
(2014)
Cognit. Comput.
, vol.6
, Issue.3
, pp. 432-445
-
-
Akusok, A.1
Miche, Y.2
Hegedus, J.3
Nian, R.4
Lendasse, A.5
-
20
-
-
84959854155
-
Image-based classi-cation of websites
-
T. Villmann and F.-M. Schleif, Eds. Saarbrücken, Germany: GCPR, Sep.
-
A. Akusok, A. Grigorievskiy, A. Lendasse, and Y. Miche, "Image-based classi-cation of websites, " in Machine Learning Reports, vol. 18, T. Villmann and F.-M. Schleif, Eds. Saarbrücken, Germany: GCPR, Sep. 2013, pp. 25-34.[Online]. Available: http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-02-2013.pdf
-
(2013)
Machine Learning Reports
, vol.18
, pp. 25-34
-
-
Akusok, A.1
Grigorievskiy, A.2
Lendasse, A.3
Miche, Y.4
-
21
-
-
84928167840
-
Arbitrary category classi-cation of websites based on image content
-
May
-
A. Akusok, Y. Miche, J. Karhunen, K.-M. Bjork, R. Nian, and A. Lendasse, "Arbitrary category classi-cation of websites based on image content, " IEEE Comput. Intell. Mag., vol. 10, no. 2, pp. 30-41, May 2015.
-
(2015)
IEEE Comput. Intell. Mag.
, vol.10
, Issue.2
, pp. 30-41
-
-
Akusok, A.1
Miche, Y.2
Karhunen, J.3
Bjork, K.-M.4
Nian, R.5
Lendasse, A.6
-
22
-
-
84928106753
-
Local receptive-elds based extreme learning machine
-
May
-
G.-B. Huang, Z. Bai, L. L. C. Kasun, and C. M. Vong, "Local receptive-elds based extreme learning machine, " IEEE Comput. Intell. Mag., vol. 10, no. 2, pp. 18-29, May 2015.
-
(2015)
IEEE Comput. Intell. Mag.
, vol.10
, Issue.2
, pp. 18-29
-
-
Huang, G.-B.1
Bai, Z.2
Kasun, L.L.C.3
Vong, C.M.4
-
23
-
-
34047174077
-
A fast and accurate online sequential learning algorithm for feedforward networks
-
Nov.
-
N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and accurate online sequential learning algorithm for feedforward networks, " IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411-1423, Nov. 2006.
-
(2006)
IEEE Trans. Neural Netw
, vol.17
, Issue.6
, pp. 1411-1423
-
-
Liang, N.-Y.1
Huang, G.-B.2
Saratchandran, P.3
Sundararajan, N.4
-
24
-
-
84922032835
-
Online and adaptive pseudoinverse solutions for ELM weights
-
Feb.
-
A. van Schaik and J. Tapson, "Online and adaptive pseudoinverse solutions for ELM weights, " Neurocomputing, vol. 149, pp. 233-238, Feb. 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231214011485
-
(2015)
Neurocomputing
, vol.149
, pp. 233-238
-
-
Van Schaik, A.1
Tapson, J.2
-
25
-
-
70450194207
-
Adaptive ensemble models of extreme learning machines for time series prediction
-
M. van Heeswijk et al., "Adaptive ensemble models of extreme learning machines for time series prediction, " in Proc. 19th Int. Conf. Artif. Neural Netw. (ICANN), 2009, pp. 305-314. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-04277-5-31
-
(2009)
Proc. 19th Int. Conf. Artif. Neural Netw. (ICANN)
, pp. 305-314
-
-
Van Heeswijk, M.1
-
26
-
-
80051584618
-
GPU-accelerated and parallelized ELM ensembles for large-scale regression
-
Sep.
-
M. van Heeswijk, Y. Miche, E. Oja, and A. Lendasse, "GPU-accelerated and parallelized ELM ensembles for large-scale regression, " Neurocomputing, vol. 74, no. 16, pp. 2430-2437, Sep. 2011.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2430-2437
-
-
Van Heeswijk, M.1
Miche, Y.2
Oja, E.3
Lendasse, A.4
-
27
-
-
84887010852
-
A methodology for building regression models using extreme learning machine: OP-ELM
-
Y. Miche, P. Bas, C. Jutten, O. Simula, and A. Lendasse, "A methodology for building regression models using extreme learning machine: OP-ELM, " in Proc. ESANN, 2008, pp. 247-252. [Online]. Available: http://dblp.uni-trier.de/db/conf/esann/esann2008.html#MicheBJSL08
-
(2008)
Proc. ESANN
, pp. 247-252
-
-
Miche, Y.1
Bas, P.2
Jutten, C.3
Simula, O.4
Lendasse, A.5
-
28
-
-
73949154686
-
OP-ELM: Optimally pruned extreme learning machine
-
Jan.
-
Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse, "OP-ELM: Optimally pruned extreme learning machine, " IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 158-162, Jan. 2010. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20007026
-
(2010)
IEEE Trans. Neural Netw
, vol.21
, Issue.1
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
29
-
-
80051671932
-
TROP-ELM: A double-regularized ELM using LARS and Tikhonov regularization
-
Sep
-
Y. Miche, M. van Heeswijk, P. Bas, O. Simula, and A. Lendasse, "TROP-ELM: A double-regularized ELM using LARS and Tikhonov regularization, " Neurocomputing, vol. 74, no. 16, pp. 2413-2421, Sep. 2011. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S092523121100258X
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2413-2421
-
-
Miche, Y.1
Van Heeswijk, M.2
Bas, P.3
Simula, O.4
Lendasse, A.5
-
30
-
-
84870244730
-
Regularized extreme learning machine for regression with missing data
-
Feb.
-
Q. Yu, Y. Miche, E. Eirola, M. van Heeswijk, E. Séverin, and A. Lendasse, "Regularized extreme learning machine for regression with missing data, " Neurocomputing, vol. 102, pp. 45-51, Feb. 2013. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-84870244730 &partnerID=40&md5=4bc9805ef198a3de44fd2c2a976834b5
-
(2013)
Neurocomputing
, vol.102
, pp. 45-51
-
-
Yu, Q.1
Miche, Y.2
Eirola, E.3
Van Heeswijk, M.4
Séverin, E.5
Lendasse, A.6
-
31
-
-
84868626655
-
Weighted extreme learning machine for imbalance learning
-
Feb.
-
W. Zong, G.-B. Huang, and Y. Chen, "Weighted extreme learning machine for imbalance learning, " Neurocomputing, vol. 101, pp. 229-242, Feb. 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231212006479
-
(2013)
Neurocomputing
, vol.101
, pp. 229-242
-
-
Zong, W.1
Huang, G.-B.2
Chen, Y.3
-
32
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
Mar.
-
S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks, " IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302-309, Mar. 1991.
-
(1991)
IEEE Trans. Neural Netw
, vol.2
, Issue.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.F.N.2
Grant, P.M.3
-
33
-
-
29044434244
-
Generalized inverse of a matrix and its applications
-
Berkeley, CA, USA: Univ. California Press
-
C. R. Rao and S. K. Mitra, "Generalized inverse of a matrix and its applications, " in Proceedings of the Sixth Berkeley Symposium on Math-ematical Statistics and Probability: Theory of Statistics, vol. 1. Berkeley, CA, USA: Univ. California Press, 1972, pp. 601-620. [Online]. Available: http://projecteuclid.org/euclid.bsmsp/1200514113
-
(1972)
Proceedings of the Sixth Berkeley Symposium on Math-ematical Statistics and Probability: Theory of Statistics
, vol.1
, pp. 601-620
-
-
Rao, C.R.1
Mitra, S.K.2
-
34
-
-
0001300994
-
Solution of incorrectly formulated problems and the regularization method
-
A. N. Tikhonov, "Solution of incorrectly formulated problems and the regularization method, " Soviet Math. Doklady, vol. 4, pp. 1035-1038, 1963.
-
(1963)
Soviet Math. Doklady
, vol.4
, pp. 1035-1038
-
-
Tikhonov, A.N.1
-
35
-
-
84942487147
-
Ridge regression: Applications to nonorthogonal problems
-
A. E. Hoerl and R. W. Kennard, "Ridge regression: Applications to nonorthogonal problems, " Technometrics, vol. 12, no. 1, pp. 69-82, 1970.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 69-82
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
36
-
-
33646231022
-
Multiresponse sparse regression with application to multidimensional scaling
-
T. Similä and J. Tikka, "Multiresponse sparse regression with application to multidimensional scaling, " in Proc. 15th Int. Conf. Artif. Neural Netw., Formal Models Appl. (ICANN), 2005, pp. 97-102. [Online]. Available: http://dl.acm.org/citation.cfm?id=1986079.1986097
-
(2005)
Proc. 15th Int. Conf. Artif. Neural Netw. Formal Models Appl. (ICANN)
, pp. 97-102
-
-
Similä, T.1
Tikka, J.2
-
37
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least angle regression, " Ann. Statist., vol. 32, no. 2, pp. 407-499, 2004.
-
(2004)
Ann. Statist.
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
38
-
-
34547524121
-
Common subset selection of inputs in multiresponse regression
-
T. Simila and J. Tikka, "Common subset selection of inputs in multiresponse regression, " in Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2006, pp. 1908-1915.
-
(2006)
Proc. Int. Joint Conf. Neural Netw. (IJCNN)
, pp. 1908-1915
-
-
Simila, T.1
Tikka, J.2
-
40
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines, " ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011, Art. ID 27.
-
(2011)
ACM Trans. Intell. Syst. Technol.
, vol.2
, Issue.3
-
-
Chang, C.-C.1
Lin, C.-J.2
-
41
-
-
84959855049
-
-
M. Jordan, J. Kleinberg, and B. Schölkopf, Eds. New York, NY, USA: Springer Verlag
-
C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), vol. 4, M. Jordan, J. Kleinberg, and B. Schölkopf, Eds. New York, NY, USA: Springer-Verlag, 2006, no. 4. [Online]. Available: http://www.library.wisc.edu/selectedtocs/bg0137.pdf
-
(2006)
Pattern Recognition,Machine Learning (Information Science and Statistics)
, vol.4
, Issue.4
-
-
Bishop, C.M.1
-
42
-
-
35048879177
-
Gaussian processes in machine learning
-
O. Bousquet U. von Luxburg and G. Rätsch Eds. Berlin Germany: Springer Verlag
-
C. E. Rasmussen, "Gaussian processes in machine learning, " in Advanced Lectures on Machine Learning (Lecture Notes in Computer Science), O. Bousquet, U. von Luxburg, and G. Rätsch, Eds. Berlin, Germany: Springer-Verlag, 2004, pp. 63-71. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-28650-9-4
-
(2004)
Advanced Lectures on Machine Learning (Lecture Notes in Computer Science)
, pp. 63-71
-
-
Rasmussen, C.E.1
-
43
-
-
13344275139
-
Skin segmentation using color pixel classi-cation: Analysis and comparison
-
Jan.
-
S. L. Phung, A. Bouzerdoum, and D. Chai, "Skin segmentation using color pixel classi-cation: Analysis and comparison, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 1, pp. 148-154, Jan. 2005.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.27
, Issue.1
, pp. 148-154
-
-
Phung, S.L.1
Bouzerdoum, A.2
Chai, D.3
|