메뉴 건너뛰기




Volumn 65, Issue , 2015, Pages 115-125

Local Rademacher Complexity: Sharper risk bounds with and without unlabeled samples

Author keywords

Local rademacher complexity; Performance estimation; Statistical learning theory; Unlabeled samples

Indexed keywords

COGNITIVE SYSTEMS;

EID: 84923326912     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2015.02.006     Document Type: Article
Times cited : (36)

References (30)
  • 1
    • 85162530132 scopus 로고    scopus 로고
    • The impact of unlabeled patterns in Rademacher complexity theory for kernel classifiers
    • Anguita D., Ghio A., Oneto L., Ridella S. The impact of unlabeled patterns in Rademacher complexity theory for kernel classifiers. Neural information processing systems 2011, 585-593.
    • (2011) Neural information processing systems , pp. 585-593
    • Anguita, D.1    Ghio, A.2    Oneto, L.3    Ridella, S.4
  • 6
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: risk bounds and structural results
    • Bartlett P.L., Mendelson S. Rademacher and Gaussian complexities: risk bounds and structural results. The Journal of Machine Learning Research 2003, 3:463-482.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 7
    • 79953837525 scopus 로고    scopus 로고
    • Discussion: local Rademacher complexities and oracle inequalities in risk minimization
    • Blanchard G., Massart P. Discussion: local Rademacher complexities and oracle inequalities in risk minimization. The Annals of Statistics 2006, 34:2664-2671.
    • (2006) The Annals of Statistics , vol.34 , pp. 2664-2671
    • Blanchard, G.1    Massart, P.2
  • 10
    • 0037561860 scopus 로고    scopus 로고
    • A bennett concentration inequality and its application to suprema of empirical processes
    • Bousquet O. A bennett concentration inequality and its application to suprema of empirical processes. Comptes Rendus Mathematique 2002, 334:495-500.
    • (2002) Comptes Rendus Mathematique , vol.334 , pp. 495-500
    • Bousquet, O.1
  • 16
    • 33746194045 scopus 로고    scopus 로고
    • Local Rademacher complexities and oracle inequalities in risk minimization
    • Koltchinskii V. Local Rademacher complexities and oracle inequalities in risk minimization. The Annals of Statistics 2006, 34:2593-2656.
    • (2006) The Annals of Statistics , vol.34 , pp. 2593-2656
    • Koltchinskii, V.1
  • 22
    • 84876310829 scopus 로고    scopus 로고
    • An improved analysis of the Rademacher data-dependent bound using its self bounding property
    • Oneto L., Ghio A., Anguita S., Ridella S. An improved analysis of the Rademacher data-dependent bound using its self bounding property. Neural Networks 2013, 44:107-111.
    • (2013) Neural Networks , vol.44 , pp. 107-111
    • Oneto, L.1    Ghio, A.2    Anguita, S.3    Ridella, S.4
  • 26
    • 34247197035 scopus 로고    scopus 로고
    • Fast rates for support vector machines using Gaussian kernels
    • Steinwart I., Scovel C. Fast rates for support vector machines using Gaussian kernels. The Annals of Statistics 2007, 35:575-607.
    • (2007) The Annals of Statistics , vol.35 , pp. 575-607
    • Steinwart, I.1    Scovel, C.2
  • 27
    • 0000080373 scopus 로고
    • The Glivenko-Cantelli problem
    • Talagrand M. The Glivenko-Cantelli problem. The Annals of Probability 1987, 15:837-870.
    • (1987) The Annals of Probability , vol.15 , pp. 837-870
    • Talagrand, M.1
  • 30
    • 84872041337 scopus 로고    scopus 로고
    • Lambert W-Function. From MathWorld-A Wolfram Web Resource.
    • Weisstein, E.W. (2013). Lambert W-Function. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/LambertW-Function.html.
    • (2013)
    • Weisstein, E.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.